Posted in Algebra

The multiple meanings of letter symbols in algebra- Part 2 of x

In Part 1 of this series of posts about what makes algebra difficult, I discuss the multiple meanings of equal sign learners has deal with to make sense of the subject. With the changing meaning of equal sign and equations comes the changing meaning of the letter symbols.

Teachers would oftentimes introduce algebra by telling their learners that x stands for an unknown number. It is not incorrect but that’s not all. Some teachers also introduce the word variable by saying that x can take any value that’s why x is called a variable. Again, it is not incorrect but that’s not all. I have heard teachers that say that in an equation, the x is an unknown, but in an algebraic expression, the x is a variable because it can take any value. Is it this simple? Let us consider the following example:

variable

In letter A in the figure above, x can take infinite number of values but it is not an expression. It is an equivalence. Is x a variable then? The use of x is actually as a placeholder.  In C, x can take any values so it is a variable. But f(x) is a function so x is called the argument of the function. We also have to be careful when we say that a letter symbol stands for a number (or value) because in the function in C, f does not stands for a value but simply as a name for the function that maps x to 8x +12 as I pointed out in the previous article. Because f(x)=8x+12 represents a function, we further distinguish between the values of x and f(x) as independent and dependent variable.

In letter B, x is known as unknown (pun intended) and students usually learn it so well, they apply it everywhere. I tell you a little story of a Year 7 algebra class I observed. The teacher gave the following problem:

The school library charges 3 pesos if a book is returned a day late. An additional 25 centavos is charged for each succeeding days that a book is not returned. How much will Aldo be charged if he returns a book 2 days late? 3 days late? 4 day later? 5 days late? x days late?

A student has this solution:

function table

When asked how he calculated for x days, the student explained that he only added 0.25 to 4.0. The teacher asked what about x? The students said x is an unknown but since it comes right after 5 so it must be 6.

Related to the multiple meaning of “x” are the algebraic expressions. Students learned during the introduction of algebra that 2x represents an even number and 2x+1 represents and odd number. In Equation B above, we say that 8x+12 = 2x+1. But, 8x+12=4(2x+3) so this means that 4(2x+3)=2x+1. Now, how come than an even number is now equal to an odd number? How would you now explain this to your learners? I will leave this to the readers so not to spoil the fun 🙂

Salman Usiskin has written numerous articles trying to articulate the multiple meanings of equations and letter symbols. Here are some of his ‘equations’. What is the meaning of the letter symbols in each of the following?

identity

In 1) A, L, and W stands for the quantities area, length, and width and have a feel of ‘knowns’; in 2), we say x is unknown; in 3), x is an argument; in 4), n stands for an instance of the generalized arithmetic pattern; and, in 5) x is an argument, y is the value of the function and k is a parameter. It is only in 5) that we have a feel of variability hence we say x is a variable. It has a different feel from 3) where you don’t get a sense of variability hence in this case, x is more of a placeholder.

The multiple meanings of letter symbols is a source of learners difficulty in algebra. Note, however, that this is also what makes algebra a powerful language and thinking tool.

In my next post I will discuss about the dual nature of algebraic objects as source of learners difficulty in algebra.

Posted in Algebra

Tough Algebra Questions about Equations and Expressions

Here are some questions your students have been wanting to ask you in your algebra class. Daniel Chazan and Michal Yerushalmy in their article On Appreciating the Cognitive Complexity of School Algebra posed these questions about equivalence of equations , solving equations, and equivalence of expressions for us teachers to ponder upon.

function_notationHow will you answer the following questions? What explanation will you give to the students?

Continue reading “Tough Algebra Questions about Equations and Expressions”

Posted in Math blogs

Top 20 Math Posts and Pages in 2012

The thinker

I blog in order to organise what I think. And I don’t think I’m succeeding judging from the range of topics that I have so far written since I started Math for Teaching blog in 2010. Here’s the twenty most popular math posts and pages in this blog for the year 2012. It’s a mix of curricular issues, lessons, and teaching tips.

  1. What is mathematical investigation? – Mathematical investigation refers to the sustained exploration of a mathematical situation. It distinguishes itself from problem solving because it is open-ended….
  2. Exercises, Problems, and Math Investigations – The quality of mathematics students learn depends on the mathematical tasks or activities we let our students engage in….
  3. What is mathematical literacy? – Mathematical literacy involves more than executing mathematical procedures and possessions of basic knowledge that would allow a citizen to get by. Mathematical literacy is mathematical knowledge, methods,…
  4. My issues with Understanding by Design (UbD) – Everybody is jumping into this new education bandwagon like it is something that is new indeed. Here are some issues I want to raise about UbD…
  5. Curriculum change and Understanding by Design, what are they solving? – Not many teachers make an issue about curriculum framework or standards in this part of the globe. The only time I remember teachers raised an issue about it was in 1989, when the mathematics curriculum moved …
  6. Math investigation lesson on polygons and algebraic expressions – Understanding is about making connection. The extent to which a concept is understood is a function of the strength of its connection with other concepts. An isolated piece of knowledge is not powerful…
  7. Mathematics is an art – Whether we are conscious of it or not, the way we teach mathematics is very much influenced by what we conceive mathematics is and what is important knowing about it…
  8. Mathematical habits of mind – Learning mathematics is not just about knowing, understanding, and applying its concepts, principles and all the associated mathematical procedures and algorithms. It’s not just even about  acquiring the capacity to solve problem,  to reason, and to communicate…
  9. Subtracting integers using numberline – why it doesn’t help the learning – I have reasons to suspect that for a good percentage of students, the end of their mathematics career begin when they are introduced to subtracting integers. Well, for some, it’s when the x‘s start dropping from the sky without warning…
  10. Teaching positive and negative numbers – Here’s my proposed activity for teaching positive and negative numbers that engages students in higher-level thinking…
  11. Trigonometry – why study triangles – What is so special about triangles? Why did mathematicians created a branch of mathematics devoted to the study of it? Why not quadrinometry? Quadrilaterals, by its variety are far more interesting….
  12. Teaching the concept of function – Mathematics is not just about the study of numbers and shapes but also about the study of patterns and relationships. Function, which can define some of these relationships, is an indispensable tool in its study…
  13. Algebraic thinking and subtracting integers – Part 2 – Algebraic thinking is about recognizing, analyzing, and developing generalizations about patterns in numbers, number operations, and relationships among quantities and their representations.  It doesn’t have to involve working with the x‘s and other stuff of algebra….
  14. Patterns in the tables of integers – Mathematics is said to be the science of patterns. Activities that involve pattern searching is a great way to engage students in mathematical thinking. Here are some of my favorites …
  15. Making generalizations in mathematics – Making generalizations is fundamental to mathematics. Developing the skill of making generalizations and making it part of the students’ mental disposition or  habits of mind …
  16. Teaching with GeoGebra: Squares and Square Roots – This post outlines a teaching sequence for introducing the concept of square roots in a GeoGebra environment. Of course you can do the same activity using grid papers, ruler and calculator….
  17. Algebra vs Arithmetic Thinking – One of the solutions to help students understand algebra in high school is to start the study of algebra earlier hence the elementary school curriculum incorporated some content topics traditionally studied in high school. However,…
  18. Teaching with GeoGebra – Educational technology like GeoGebra can only facilitate understanding if the students themselves use it. This page contains a list of my posts …
  19. Teaching combining algebraic expressions with conceptual understanding – In this post, I will share some ideas on how the simple investigation of drawing polygons with the same area can be used as an introductory lesson to teach operations with algebraic expressions with meaning and understanding.
  20. Mistakes and Misconceptions in Mathematics – Misconceptions are very different from the mistakes students make. Mistakes are not consciously made. Misconceptions are. Mistakes are usually one-off, while misconceptions, the gods forbid, could be for keeps….
Posted in Algebra

Equations, Equations, Equations

Students deal with a different ‘types’ of equations: equations in one unknown, equations in two unknowns, and the equation representations of function. There are others like the parametric equations but let’s talk about the first three I just enumerated. Is there a connection among all these three apart from being equations?

Let’s take for example the equation 4x – 1 = 3x + 2. To solve the equation, students are taught to use the properties of equality. When the topic gets to equation in two unknowns, this equation is learned independently of the equation in one unknown especially in  finding the solutions. When the topic gets to solving systems of equation say 3x+y = 4 and xy = 5, the methods for solving the system of linear equation – substitution,  elimination, graphing – are also learned without making the connection to the methods of solving equation they already know. Then, function comes in the scene; the y‘s disappeared and out of nowhere comes f(x). Most times we assume the students will make the connection themselves.

How can we help students make connection among these three? To solve equation in one unknown, I think we should not rush to teaching them how to solve it using the properties of equality. There are other ways of solving these equations one of which is generating values which I’m sure you use in introducing equations in two variables. Using the example earlier, students can generate the values of 4x – 1 and then 3x+2. This way, the question “What is x so that 4x-1 = 3x+2 is true?” will make sense to students. They will have to find the value of x that belongs to the group of numbers generated by 4x-1 as well as to the group of numbers generated by 3x+2.

equation in one unknown

Now, why go through all these? Two reasons: 1) to reinforce the notion that algebraic expressions is a generalized expression representing a group of numbers/values and 2) to plant the seed of  the notion of function and equations in two unknowns which students will meet later. Of course this does not mean we should not teach how to solve equation using the properties of equality. I just mean we should teach them other solutions that will help students make the connection when they meet the other types of equations.

function machineAnother popular tool is the input-output machine which is the same really as the table of values. For some reason they are used mostly to introduce equations in two unknowns or to introduce function. Why not introduce it early with equations in one unknown? Of course you need a second machine for the other expression. The challenge for the students is to find what they need to input in both machine so they will have the same output. The outputs can be represented by the expressions on each side of the equal sign but later you get to the study of function you may introduce y provided that y = 4x-1. Students need to see that this equation does not just mean equality but that it also means the value of y depends on x according to the rule 4x-1. Since every x value generates a unique y value, y is said to be a function of x, in symbol, y=f(x). Since y = f(x), we can also write f(x) = 4x – 1.

In most curricula, the formal study of function comes after systems of linear equation so there’s no hurry with the f(x) thing. The use of the form y = 4x-1 would be enough. If students understand equations this way I think they can figure out the substitution method for solving systems of linear equations by themselves. Graphing would therefore also be a natural solution students can think of. Equation Solver is a simple GeoGebra applet I made to help students make the connection.

Wouldn’t it be nice if students see 4x-1=3x+2 not just a simple equation in one unknown where they need to find x but also as two functions who might share the same (x,y) pair? This will really come in handy later. Solutions #2 and #3 of solving problems by equations and graphs are examples of problems where this knowledge will be needed.

I recommend that you also read my post What Makes Algebra Difficult is the Equal Sign.

To understand is to make connections. This has become a mantra in this blog. Students will not make the connection unless you make it explicit in the design and implementation of the lesson.