Posted in Number Sense

Teaching algebraic thinking without the x’s

Students need not wait till they meet Mr. x to learn about algebra. In fact, the best way to learn about algebra is to learn it while there aren’t x’s yet; when all the learners need to deal with are concepts that still make sense to them. Here is a list of tips and ways for teaching algebraic thinking as pupils learn about numbers and number operations.

1. Vary the “orientations” of the way you write number sentences.

For example, 5 + 20 = 25 can be written as 25 = 5 + 20. The first expression is about ‘doing math’, the second engages students about ‘thinking about the math’, the different representations of the number 25. The thinking involved in the second one is ‘algebraic’.

2. Be mindful of the meaning of equal sign

If you want to ask your learners to find, for example, the sum of 15 plus 6, do not write 15 + 6 =___. It’s a recipe for misconception of the meaning of equal sign. I recommend: What numbers is the same as (or equal to) 15 + 6? Better, What number phrases are the same as (or equal to) 15 + 6? This last one promotes algebraic thinking.

3. Encourage learners to generalize. Continue reading “Teaching algebraic thinking without the x’s”

Posted in Lesson Study, Number Sense

Patterns in the tables of integers

Mathematics is said to be the science of patterns. Activities that involve pattern searching is a great way to engage students in mathematical thinking. Here are some of my favorites for teaching positive and negative integers. If you are wondering why most of my posts are about integers it’s because I’m doing a Lesson Study with a group of Mathematics I (Year 7) teachers about this topic. Last week we concluded the first cycle of our research lessons on teaching subtraction of integers.

The first task students need to do with the tables is to list 3-5 observations. From there you can start asking the ‘whys’ for each observation. Sample questions are provided for each table below:

1. Adding integers

Sample questions for discussion:

a) Under what conditions will the sum be positive? negative? zero?

b) Why are there the same numbers in a diagonal?

c) How come that the sum is increasing from left to right, from bottom to top?

2. Taking away integers

Sample questions for discussion:

a) Under what conditions will the difference be positive? negative? zero?

b) Why are there the same number in a diagonal?

c) How come that for each row/column, the difference is decreasing?

3. Multiplying integers

Sample question for discussion:

a) Under what conditions will the sum be positive? negative? zero?

4. Dividing Integers

Sample question for discussion:

a) Under what conditions will the difference be positive? negative? zero?

       b) Does dividing integers still results to an integer? What do we call these new numbers?

Feel free to share your ideas/questions for discussion.

You may also want to share other  math concepts that students can learn with these tables.

Posted in Misconceptions, Number Sense

Technically, Fractions are Not Numbers

It is misleading to put fractions alongside the sets of numbers – counting, whole, integers, rational, irrational and real. The diagram below which are in many Mathematics I (Year 7) textbooks is inviting misconceptions.

WRONG WAY

Fraction is a form for writing numbers just like the decimals, percents, and other notations that use exponents and radicals, etc.

The fraction form of numbers is used to describe quantities that is 1) part of a whole, 2) part of a set, 3) ratio, and 4) as an indicated operation. Yes, it can also represent all the rational numbers but it doesn’t make fractions another kind of number or as another way of describing the rational numbers. Decimals can represent both the rational and the irrational numbers (approximately) but it is not a separate set of numbers or used as another way of describing the real numbers! Note that I’m using the word number not in everyday sense but in mathematical sense. In Year 7, where learners are slowly introduced to the rigor of mathematics and to the real number system, I suggest you start calling the numbers in its proper name.

I prefer the Venn diagram to show the relationships among the different kinds of numbers like the one shown below:

The Real Number SYSTEM
The Real Numbers

The diagram shows that the set of real numbers is composed of the rational and the irrational numbers. The integers are part of the set of rational numbers just like the counting numbers are members of the set of whole numbers and the whole numbers are members of the set of integers. The properties of each of these set of numbers can be investigated. We do not investigate if fraction is closed or is commutative under a certain operation for example, but we do it for the rational numbers.

You may want to know why we invert the divisor when dividing fractions. Click the link.

Posted in Elementary School Math, Number Sense

Who says subtracting integers is difficult?

Subtracting integers should not be difficult for most if they make sense to them. In first grade, pupils learn that 100 – 92 means take away 92 from 100. The minus sign (-) means take away or subtract.

After two or three birthdays, pupils learn that 100 – 92 means the difference between 100 and 92. The minus sign (-) means difference. The lucky ones will have a teacher that would line up numbers on a number line to show that the difference is the distance between the two numbers.

After a couple of birthdays more, pupils learn that you can actually take away a bigger number from a smaller number. The result of these is a new set of numbers called negative numbers. That is,

small numberbig number = negative number

The negative numbers are the opposites of the counting numbers they already know which turn out to have a second name, positive. The positive and the negative numbers can even be arranged neatly on a line with 0, which is neither a positive nor a negative number, between them. The farther left a negative number is from zero the smaller the number. Of course, the pupils already know that the farther right a positive number is from zero the bigger it is. It goes without saying that negative numbers are always lesser than positive numbers in value. This is easier said than understood. When I tried this out, it was not obvious for many of the learners I have to give examples of each by comparing the numbers and defining that as the number gets further to the left the lesser in value.

Now, what is 92 – 100 equal to? The difference between 92 and 100 is 8. But because we are taking away a bigger number from a smaller number, the result must be a negative number. That is 92 – 100 = -8. Notice that the meaning of the sign, -, before 8 is different from that between 92 and 100.

What about -100 – 92? Because -100 is 100 units away from the left of 0 and 92 is 92 units away from the right of 0, the total distance or difference between them is 192. But because we are taking away a bigger number, 92, from a smaller number, -100, the answer must be negative (-). That is, -100 – 92 = -192.

And -100 – -92? Easy. Both are on the left of 0. The difference or distance between them is 2 but because -92 is bigger than -100, the answer should be a negative number. That is, -100 – -92 = -8.

We  shouldn’t have a problem with 100 – -92. These numbers are 192 units apart and because we are taking away a small number from a bigger number, the answer must be positive. That had always been the case since first grade.

Who says we need rules for subtracting integers?

Click the links for other ideas for teaching integers with conceptual understanding