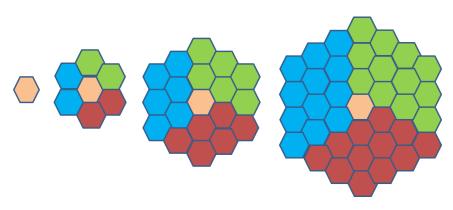

Counting Hexagons

Erlina R Ronda

Problem

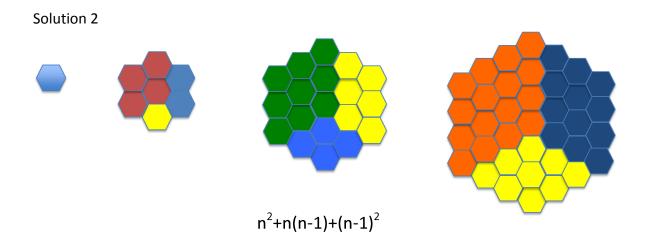
When making a cable for a suspension bridge, many strands are assembled into a hexagonal formation and then compacted together. The diagram below illustrates a 'size'5 cable made up of 61 strands.

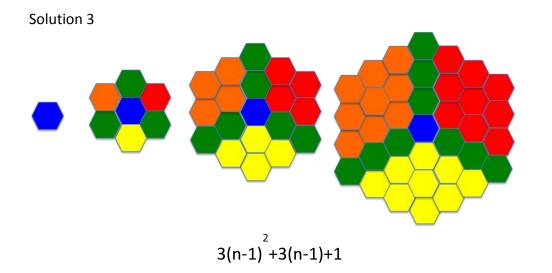
How many strands are needed for a size 10 cable? How many for a size n cable?

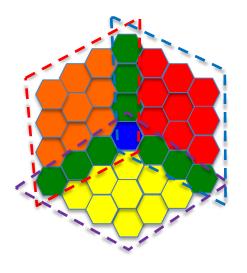

The solutions are ordered according to how I thought of it. Before I thought of the visual solutions I have to know first what kind of function relates the number of cable on the sides and the total number of cables.

No. strands at the side	1	2	3	4	5
Total no. of strands	1	7	19	37	61
First difference	Z	5 1	2	18 2	24
Second difference		× 6 ×	6	6	

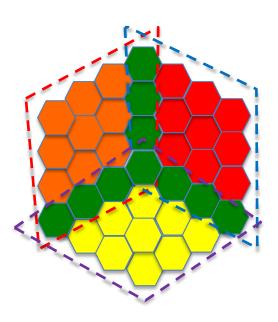
Since the second difference is constant, the function must be quadratic. From here I can use any three ordered pairs to find the equation of the quadratic or some other technique. But I thought the visual solution is more interesting.


Knowing that the function is quadratic, all I need to do is to find a portion in the figure that will calculate an n by n array or any portion in the figure that will let me calculate n^2 or an $(n-1)^2$. Here are the solutions, according to the order of how I thought of it.




3xn(n-1) +1

If n = 5, 5(5-1)x3+1 = 5x4x3+1 = 61



Solution 4

3n²-3(n-1)-2

Solution 5

3n²-3n+1