Posted in Algebra

Generating Algebraic Expressions: Counting Hexagons

In solving generalization problems that involve figures and diagrams, I have always found working with the figures—constructing and deconstructing them—to generate the formula more interesting than working with the sequence of numbers directly that is, making a table of values and apply some technique to find the formula. Here’s a sample problem involving counting hexagons.

Problem: When making a cable for a suspension bridge, many strands are assembled into a hexagonal formation and then compacted together. The diagram below illustrates a ‘size 4’ cable made up of 37 strands. Continue reading “Generating Algebraic Expressions: Counting Hexagons”

Posted in Algebra

Strengths and limitations of each representation of function

Function is defined in many textbooks as a correspondence between two sets x  and y such that for every x there corresponds a unique y. Of course there are other definition. You can check my post on the evolution of the definition of function. Knowing the definition of a concept however does not guarantee understanding the concept. As Kaput argued, “There are no absolute meanings for the mathematical word function, but rather a whole web of meanings woven out of the many physical and mental representations of functions and correspondences among representations” (Kaput 1989, p. 168). Understanding of function therefore may be done in terms of understanding of its representations. Of course it doesn’t follow that facility with the representation implies an understanding of the concept it represents. There are at least three representational systems used to study function in secondary schools. Kaput described the strengths and limitations of each of these representational systems. This is summarised below:

Tables: displays discrete, finite samples; displays information in more specific quantitative terms; changes in the values of variables are relatively explicitly available by reading horizontally or vertically when terms are arranged in order (this is not easily inferred from graph and formula).

Graphs: can display both discrete, finite samples as well as continuous infinite samples; quantities involved are automatically ordered compared to tables; condenses pairs of numbers into single points; consolidates a functional relationship into a single visual entity (while the formula also expresses the relationship into a single set of symbols, individual pair of values are not easily available for considerations unlike in the graph).

Formulas/ Equations: a shorthand rule, which can generate pairs of values (this is not easily inferred from tables and graphs); has a feature (the coefficient of x) that conveys conceptual knowledge about the constancy of the relationship across allowable values of x and y — a constancy inferable from table only if the terms are ordered and includes a full interval of integers in the x column; parameters in equation aid the modelling process since it provides explicit conceptual entities to reason with (e.g. in y = mx, m represents rate).

It is obvious that the strength of one representation is the limitation of another. A sound understanding of function therefore should include the ability to work with the different representations confidently. Furthermore, because these representations can signify the same concept, understanding of function requires being able to see the connections between the different representations since “the cognitive linking of representations creates a whole that is more than the sum of its parts” (Kaput, 1989, p. 179). Below is a sample task for assessing understanding of the link between graphs and tables. Click solutions to view sample students responses.

tables and graphs

How do you teach function? Which representation do you present first and why?

Reference

Ronda, E. (2005). A Framework of Growth Points in Students Developing Understanding of Function. Unpublished doctoral dissertation. Australian Catholic University, Melbourne, Australia.

Posted in Trigonometry

Slopes of tangent lines

One of the most difficult items for the Philippine sample in the Trends and Issues in Science and Mathematics Education Study (TIMSS) for Advanced Mathematics and Science students conducted in 2008, is about comparing the slopes of the tangent at a point on a curve. The question is constructed so that it assesses not only the students understanding of tangent lines to the graph of a trigonometric function but also students’ skill to use mathematics to explain their thinking. The question is one of the released items of TIMSS Advanced 2008 so I can share it here. The graph actually extends beyond point B in the original item.

Sophia is studying the graph of the function y=x+cos x. She says that the slope at point A is the same as the slope at point B. Explain why she is correct.

I don’t have information  if the students’ difficulty has to do with their mathematical understanding or it is the way the question is asked. I have a feeling that had the question been ‘What is the derivative of the function y = x + cos x?’, the students would have been able to answer it. But of course, the item is also assessing students’ conceptual understanding of derivative as the slope of the tangent line at a point on a curve.

The TIMSS Advanced tests were given to Year 11/12 populations. Because the country does not have senior high schools, the Philippines sample were Year 10 students from Science High Schools where calculus is a required subject. The group of teachers we were discussing this question with said they are only able to cover up to the derivative of polynomial functions although the syllabus cover derivative of trigonometric functions. Indeed, the problem should not be difficult to those who have taken calculus or at least have reached the topic about the derivative of trigonometric functions. The solution is pretty straight forward. The derivative of the function y = x + cos x is 1+-sin x so the slope of the tangent  at ? and 2? is 1.

Covering the syllabus is really a problem because of lack of time. Even if the students are well selected, I think it is still a tall order to cover topics what other countries would cover with an additional two years in high school. Quality of teaching suffers when teachers will teach math at lightning speed. One is forced to do chalk and talk.

The TIMSS item shown above can still be solved with basic knowledge of trigonometric function and slopes of tangent lines. The function y = x + cos x is a sum of the function y = x and y = cos x. The slope of y = x is 1. That slope is constant. The function y = cos x has turning points at ? and 2? hence the slope of the tangents at these points is 0. So, Sophia is correct in saying that the slope of the tangents at ? and 2? in y = x + cos x are the same. Students are more likely to analyze the problem this way if they have a conceptual understanding of the functions under consideration and if they are exposed to similar way of thinking, especially of expressing representations in equivalent and more familiar form. This way of thinking need to be developed early on. For example, learners need to be exposed to tasks such

1) Find as many ways of  expressing the number 8.

2) What number goes to the blanks in 14 + ___ = 15 + ____.

3) Solve 3x = 2x – 1 graphically.

You may want to read my other posts to items based on TIMSS framework here and proposed framework for analysing understanding of function in equation form and sample problem on sketching the graph of the derivative function.

 

References for understanding the idea of derivatives

1.Students’ conceptual understanding of a function and its derivative in an experimental calculus course [An article from: Journal of Mathematical Behavior]
2. Calculus: An Intuitive and Physical Approach (Second Edition)