Posted in Geometry

Unpacking mathematics – a geometry example

Engineers, mathematicians, and mathematics teachers all deal with mathematics but it is only the math teacher who talks about math to non-mathspeakers and initiate them to ‘mathspeak’. To do this, the math teachers should be able to ‘unpack’ for the students the mathematics that mathematicians for years have been so busy ‘packing’ (generalising  and abstracting) so that these learners will learn to do the basics of packing by themselves. This is in fact the real job description of a mathematics teacher. I won’t comment about the remuneration as this is not this blog is about. I thought it would be best for me to continue sharing about the ways we can unpack some of the important ideas in mathematics as this is the mission of this blog. Just in case you haven’t read the blog description, this blog is not about making mathematics easy because math is not so stop telling your students that it is because that makes you a big liar. What we should try to do as math teacher is to make math make sense because it does. This means that your lesson should be organised and orchestrated in a way that shows math does makes sense by making your lesson coherent and the concepts connected.

Today I was observing a group of teachers working on a math problem and then examining sample students solutions. The problem is shown below:

congruent triangles

The teachers were in agreement that there is no way that their own students will be able to make the proof even if they know how to prove congruent triangles and know the properties of a parallelogram. They will not think of making the connection between the concepts involved. I thought their concerns are legitimate but I thought the problem is so beautiful (even if the way it is presented is enough to scare the wits out of the learners) that it would be a shame not to give the learners the chance to solve this problem. So what’s my solution to this dilemma? Don’t give that problem right away. You need to unpack it for the learners. How? To prove that AFCE is a parallelogram, learners need to know at least one condition for what makes it a parallelogram. To be able to do that they need to know how to prove triangle congruence hence they need to be revised on it. To be able to see the necessity of triangle congruence in proving the above problem, learners need to see the triangles as part of the parallelogram. So how should the lesson proceed?

Below is an applet I developed that teachers can use to initiate their learners in the business of making proofs where they apply their knowledge of proving triangles and properties of quadrilaterals, specifically to solving problems similar to the above problem.  Explore the applet below. Note the order of the task. You start with Task 1 where the point in the slider is positioned at the left endpoint. Task 2 should have the point positioned at the right end point. You can have several questions in this task. Task 3 should have the point between the endpoints of the slider. Of course you can also present this using static figures but the power of using a dynamic one like the geogebra applet below not only will make it interesting but the learners sees how the tasks are related.

Task 1

  1. What do the markings in the diagram tell you about the figure ABCD? What kind of shape is ABCD? Tell us how you know.
  2. Do you think the two triangles formed by the diagonals are congruent? Can you prove your claim?

Task 2 – Which pairs of triangles are congruent? Prove your claims

Task 3 – What can you say about the shape of AFCE? Prove your claim.

[iframe https://math4teaching.com/wp-content/uploads/2013/05/Parallelogram_Problem.html 550 500]

Here’s the link to the applet  Parallelogram Problem

Note that Task 3 has about 4 different solutions corresponding to the properties of a parallelogram. I will show it in my future post.

More of this type: Convert a Boring Geometry Problem to Exploratory Version

Posted in Mathematics education

NCTM Process Standards vs CCSS Mathematical Practices

The NCTM process standards, Adding it Up mathematical proficiency strands, and Common Core State Standards for mathematical practices are all saying the same thing but why do I get the feeling that the Mathematical Practices Standards is out to get the math teachers.

The NCTM’s process standards of problem solving, reasoning and proof, communication, representation, and connections describe for me the nature of mathematics. They are not easy to understand especially when you think that school mathematics is about stuffing students with knowledge of content of mathematics. But, over time you find yourselves slowly shifting towards structuring your teaching in a way that students will understand and appreciate the nature of mathematics.

The five strands of proficiency were also a great help to me as a teacher/ teacher-trainer because it gave me the vocabulary to describe what is important to focus on in teaching mathematics.

With the Mathematical Practices Standards I had this picture of myself in the classroom with a checklist of the standards in one hand and a lens on the other looking for evidence of proficiency. The NCTM and Adding it Up standards actually said more about math. The ones in Common Core are saying more about what students should attain. I wonder which will encourage ‘teaching to the test’. The day teachers start to ‘teach to the test’ is the beginning of the end of any education reform.

NCTM Process Standards

Five Strands of Mathematical Proficiency

CCSS Mathematical Practices

Problem Solving

  1. Build new mathematical knowledge through open-ended questions and more-extended exploration;
  2. Allow students to recognize and choose a variety of appropriate strategies to solve problems;
  3. Allow students to reflect on their own and other strategies for solving problems.

Reasoning and Proof

  1. Recognize and create conjectures based on patterns they observe;
  2. Investigate math conjectures and prove that in all cases they are true or that one counterexample shows that it is not true;
  3. Explain and justify their solutions.

Communication:

  1. Organize and consolidate their mathematical thinking in written and verbal communication;
  2. Communicate their mathematical thinking clearly to peers, teachers, and others;
  3. Use mathematical vocabulary to express mathematical ideas precisely.

Connections

  1. Understand that mathematical ideas are interconnected and that they build and support each other;
  2. Recognize and apply connections to other contents;
  3. Solve real world problems with mathematical connections.

Representation

  1. Emphasize a variety of mathematical representations including written descriptions, diagrams, equations, graphs, pictures, and tables;
  2. Select, apply, and translate among mathematical representations to solve problems;
  3. Use mathematics to model real-life problem situations.

Conceptual Understanding refers to the “integrated and functional grasp of mathematical ideas”, which “enables them [students]
to learn new ideas by connecting those ideas to what they already know.”

Procedural fluency is defined as the skill in carrying out procedures flexibly, accurately, efficiently, and
appropriately.

Strategic competence is the ability to formulate, represent, and solve mathematical problems.

Adaptive reasoning is the capacity for logical thought, reflection, explanation, and justification.

Productive disposition is the
inclination to see mathematics as sensible, useful, and worthwhile, coupled with a belief in diligence and one’s own efficacy.

Mathematically proficient students …

  • Make sense of problems and persevere in solving them.
  • Reason abstractly and quantitatively.
  • Construct viable arguments and critique the reasoning of others.
  • Model with mathematics.
  • Use appropriate tools strategically.
  • Attend to precision.
  • Look for and make use of structure.
  • Look for and express regularity in repeated reasoning.

Image from 123RF