Posted in Algebra

Teaching the properties of equality through problem solving

problem solvingI like to teach mathematical concepts via problem solving. It right away engages students mind. It creates a need for learning a more systematic way of doing things and hence a reason for learning the concept. It provides a context for making connections. Most important of all, it gives students opportunity to learn before they are taught.

One of the ways of creating a problem solving task for this kind of lesson is to start by giving the solution/answer.  For example, a standard textbook task is to solve for x in an equation.  Why not do it the other way and ask students to find the equation given the solution?

Here is my favorite problem for introducing the properties of equality:

Write three equations in x with solution x = 5.

Fresh from their elementary school math experience of solving equation of the type  15 – ___ = 20 or x + 12.3 = 20, students will generate equations by trial and adjust. That is, they think of an equation then check if it gives x = 5 by substituting the value of x to the equation.  It will not take long for them to realize that this is something very tedious.

Other students will verify their equations by expressing the terms into equivalent structure. I explained this method in my previous post. This method is not also very efficient for some equations. But students have to experience these so that they will be able to appreciate the efficiency of solving equations using the properties of equality.

Usually when they already have at least two equations I will extend the task to:

Two of the equations should have x on both sides of the equal sign .

Challenge them further to think of a more systematic way for making the equations. You will not hear the bell ring before students will realize that all they need to do to have an x on both sides is to add or subtract x on both sides of the equal sign! (Multiplying or dividing by x is a different matter as there is a possibility that x can be zero). Now they know that those ubiquitous equations in their algebra textbooks did not just drop from they sky. They can even create one themselves. The students are applying the properties of equality before they even know what they are! Speaking of constructivist teaching here.

Teachers I shared this with were also very happy because they no longer have to do trial and adjust when they make exercises for solving equations.

Posted in Algebra, Trigonometry

Teaching trigonometry via problem solving

I believe that the best way to learn mathematics is through solving problems. However, most problems are found at the end of unit or chapters. Because we are in a hurry to cover the textbooks or the curriculum, we skip the problem solving part and then we complain that our students are very poor in problem solving.

The only way to develop problem solving skills is by solving problems. The only way not to skip problem solving is to put it in the beginning of the lessons, use it in teaching the concept than as applications after learning the concepts only. I have shared sample lessons on teaching integers and algebraic expressions via problem solving in this blog. This time I’ll  share a trigonometry lesson through PowerPoint presentation. The lesson is an introductory lesson on tangent and cotangent. The lesson shows how you can introduce these concept as ratios and as functions.

Features of the lesson

  • Teaches via problem solving
  • The problems have many solutions
  • Links new concepts to previously learned knowledge
  • Problems are in real-life contexts
  • Shows geometric and algebraic (function) side of trigonometry
  • Students  compares and evaluates different solutions

The presentation shows the teacher the flow of the lesson.  Use it after the students have solved the problems in different ways, as a way of summarizing the possible solutions. Crucial to the lesson is slide #10 which contains questions for discussing the students’ solutions and the link between the previously learned concepts and the new concepts introduced in this lesson.

 

Posted in Curriculum Reform

Mathematical habits of mind

Learning mathematics is not just about knowing, understanding, and applying its concepts, principles and all the associated mathematical procedures and algorithms. It’s not just even about  acquiring the capacity to solve problem,  to reason, and to communicate. It is about making these capacities part of students’ thinking habits. It is only then that one can be said to be mathematically literate.

The test for example that solving problem is no longer just a skill but has become part of students thinking habit is when students are doing it without the teachers still having to ask “Can you explain why you solve it that way?” or “Can you do it another way?” Those should be automatic to students.

“A habit is any activity that is so well established that it occurs without thought on the part of the individual.”

Here’s is a list of important mathematical habits of mind that I believe every teacher should aim for in any mathematics lesson.

Habit #1: Searching for Patterns

Students should develop the habit of

  • generating cases and generalizing patterns
  • looking-out for short-cuts that arise from patterns in calculations
  • investigating special cases, extreme cases from patterns observed

Habit #2: Reasoning

Students should develop the habit of

  • explaining the positions they take
  • providing mathematical evidence/justification for the conjectures or generalizations they make
  • testing conjectures by generating cases both special and extreme
  • justifying why a generalization will work for all cases or for some cases only

Habit #3: Solving and posing problems

Students should develop the habit of

  • always looking for alternative solutions to problems
  • extending problems and solutions to more general case
  • solving problems algebraically, geometrically, numerically
  • asking clarifying and extending questions

Habit # 4: Making connections

Students should develop the habit of

  • Linking algebra, number, geometry, statistics and probability
  • Finding/devising equivalent representations of the same concept
  • Linking math concepts to real-world situation

Habit #5: Communicating mathematically

Students should develop the habit of

  • using appropriate notation and representation
  • noticing faulty, incomplete or misleading use of numbers

Habit #6: Reflecting and self-directing learning

Habit is a cable

All these are only possible  in an environment where students are engage in problem solving and mathematical investigation tasks.

If you want to know more about mathematical thinking, the books below are great read.