Posted in Geogebra, Geometry

Constructing polygons with equal area

The power of GeoGebra lies not only for demonstrating a concept but more so for creating a situation where students are made to think, solve problems, and reason mathematically. Here is a sample lesson on how this can be done. The lesson involves the concept of area of triangles and constructing parallel lines applied to problems involving preserving areas of polygons. The most ideal situation is for students to explore on the applets individually or in small group. If this is not possible and the students have no computers, the applets can be projected. The teacher can then call a students or two to explore the applets. The idea is to stimulate students’ thinking to think of explaining why the transformations of the shapes are possible. The students should have a triangle rulers or straight edge with them. The lesson will not be complete if the students cannot devise a procedure for transforming a triangle into other polygonal shapes with the area preserved.

The following applet may be used in the introductory activity to teach about triangles with equal areas. Click here to explore. The applet shows that all triangles with equal base and have equal heights or altitude have equal areas. That’s pretty obvious of course.

The next applet is more challenging but uses the same principle as the first.
Depending on the previous knowledge of your students you can give this second applet right away without showing the first applet on triangles. Click here or the worksheet below explore and answer the problem.

Extension problems using the same principle about area of triangles.

triangle rulers
  1. Given a triangle, construct the following polygons equal in area to the given triangle using triangle rulers and pencil only:  a) parallelogram; b)trapezoid; c) hexagon. (There’s nothing that should prevent you from using GeoGebra to construct them.)
  2. The Rosales and Ronda families are not very happy with their piece of land because of the narrow corners. Help this family to draw a new boundary line without changing the land area of each family.

I will deprive you of the fun if I will show the answers here right away, won’t I?

I will appreciate feedback on this lesson.

Posted in Algebra, Geogebra, Geometry, High school mathematics

Teaching with GeoGebra: Squares and Square Roots

This post outlines a teaching sequence for introducing the concept of square roots in a GeoGebra environment. Of course you can do the same activity using grid papers, ruler and calculator. However, if the students have access to computers then I highly recommend that you use GeoGebra to do this. In my post GeoGebra and Mathematics, I argued that the more the students understand the mathematics behind GeoGebra, the more confident they could become in using this tool. The earlier the exposure to this environment, the better. The way to do this is to integrate the learning of the tool in learning mathematics.

The figure below is the result of the final activity in my proposed teaching sequence for teaching square roots of numbers and some surds or irrational numbers. The GeoGebra tool that the students is expected to learn is the tool for constructing general polygons and regular polygons (the one in the middle of the toolbar).

Squares and Square Roots

The teaching sequence is composed of four activities.

Activity 1 involves exploration of the two polygon tools: polygons and regular polygons. To draw a polygon using the polygon tool is the same as drawing polygons using a ruler. You draw two pints then you use the ruler/straight edge to draw a side. But with Geogebra you click the points to determine the corners of the polygon and Geogebra will draw the lines for you. In the algebra window you will see the length of the segment and the area of the polygon. Click here to explore.

GeoGebra shows further its intelligence and economy of steps in Activity 2 which involves drawing regular polygons. Using the regular polygon tool and then clicking two points in the drawing pad, GeoGebra will ask for the number of sides of the polygon. All the students need to do is to type the number of sides of their choice and presto they will have a regular polygon. Click here to explore.

Activity 3 is the main activity which involves solving the problem Draw a square which is double the area of another square. Click here to take you to the task.

Activity 4 consolidates ideas in Activity 3. Ask the students to click File then New to get a new window from the previous activity’s applet then ask them to draw the figure above – Squares and Square Roots.  You can also use the figure to compare geometrically the values of \sqrt{2} and 2 or  show that \sqrt{8} = 2\sqrt{2}. This activity can be extended to teach addition of radicals.

Like the rest of the activities I post here, the learning of mathematics, in this case the square roots of numbers, is in the context of solving a problem. The activities link number, algebra, geometry and technology. Click here for the sequel of this post.

This is the second in the series of posts about integrating the teaching of GeoGebra and  Mathematics in lower secondary school. The first post was about teaching the point tool and investigating coordinates of points in a Cartesian plane.

GeoGebra book:

Model-Centered Learning: Pathways to Mathematical Understanding Using GeoGebra

Posted in Geometry

Problem Solving Involving Quadrilaterals

‘To understand mathematics is to make connections.’ This is one of the central ideas in current reforms in mathematics teaching. Every question, every task a teacher prepares in his/her math classes should contribute towards strengthening the connections among concepts. There are many ways of doing this. In this post I will share one of the ways this can be done: Use the same context for different problems.

The following are some of the problems that can be formulated based on quadrilateral BADF.  You can pose these problems to your class but the best way is to simply show the diagram to the students then ask them to formulate the problems themselves.

quadrilateral

Problem #1. What is the area of the quadrilateral? Show different methods.

The solution to this question depends on the grade level of students. The one shown below can be done by a Grade 5 or 6 student. Continue reading “Problem Solving Involving Quadrilaterals”

Posted in Elementary School Math, Geometry, Math investigations

Math investigation lesson on polygons and algebraic expressions

Understanding is about making connection. The extent to which a concept is understood is a function of the strength of its connection with other concepts. An isolated piece of knowledge is not powerful.

To understand mathematics is to make connections among concepts, procedures, contexts. A lesson that has a very good potential for learning a well-connected mathematical knowledge is one which is organized around a mathematical investigation. This is because of the divergence nature of this task which revolves around a single tool or context.

Here is a simple investigation activity about polygons. Change the x by x unit to 1 by 1 unit if you will give this to Grade 5-6 students.

Investigate polygons with area 5x^2 units on an x by x unit grid.

Some initial shapes students could come up with may look like the following:

different shapes, the same area
Figure 1. Polygons with the same area

Note: This is a mathematical investigation so the students are expected to pose the problems they want to pursue and on how they will solve it. It will cease to be a math investigation if the teachers will be the one to pose the problems for them. The following are sample problems that students can pose for themselves.

  • What is the same and what is different among these polygons? How can I classify these polygons?

Possible classifications would be

a. convex vs non-convex polygons

b. according to the number of sides

  • What shapes and how many are there if I only consider polygons made up of squares?

Students will discover that while they can have as many polygons with an area of 5, there are only 12 polygons made of  squares.  This is shown in Figure 2. These shapes are called pentominoes because it is made up of 5 squares. I have arranged it here for easy recall of shapes. It contains the last seven letters of the english alphabet (TUVWKXZ) and the word FILIPINO without the last 2 I’s and O in the spelling.

Figure 2. Pentominoes
  • Is there a way of constructing different triangles or any of the polygons with same area?

Figure 3 shows this process for triangle.

Figure 3.Triangle with same area

Click this or the  figure below to see this process in dynamic mode using Geogebra.

Fig 4 – Preserving area of triangle in Geogebra

Possible extension of this investigation is to consider polygons with areas other than 5x^2.

Click this link to see some ideas on how you can use this activity to teach combining algebraic expressions.