Posted in Curriculum Reform

What is mathematical literacy?

Defining mathematical literacy

The Program for International Student Assessment (PISA) of the OECD describes mathematical literacy as:

“an individual’s capacity to identify and understand the role that mathematics plays in the world, to make well-founded judgments and to use and engage with mathematics in ways that meet the needs of that individual’s life as a constructive, concerned and reflective citizen” (OECD,1999).

Mathematical literacy therefore involves more than executing mathematical procedures and possessions of basic knowledge that would allow a citizen to get by. Mathematical literacy is mathematical knowledge, methods, and processes applied in various contexts in insightful and reflective ways. According to de Lange, mathematical literacy is the overarching literacy that includes numeracy, quantitative literacy and spatial literacy. Each of these type of literacy empowers the individual in making sense of and understanding aspects of the world and his/her experiences.

De Lange’s tree structure of mathematical literacy.Spatial literacy empowers an individual to understand the three-dimensional world in which he/she lives and move. This necessitates understanding of properties of objects, the relative positions of objects and its effect on one’s visual perception, the creation of all kinds of three-dimensional paths and routes, navigational practices, etc. Numeracy is the ability to handle numbers and data in order to evaluate statements regarding problems and situations that needs mental processing and estimating real-world context. Quantitative literacy expands numeracy to include use of mathematics in dealing with change, quantitative relationships and uncertainties. Click here for deLange’s paper on this topic.

Implications to curriculum and instruction

To identify and understand the role that mathematics plays in the world is to be literate about mathematics and its applications. This means that individuals need to have an understanding of its core concepts, tools of inquiry, methods and structure.

To be able use mathematics in ways that meet the needs of one’s life as a constructive, concerned, and reflective citizen necessitates learning mathematics that is not isolated from the students’ experiences.

To be able to use mathematics to make well-founded judgment demands learning experiences that would engage students in problem solving and investigation as these would equip them to use mathematics to represent, communicate, and reason, to make decisions and to participate creatively and productively in the functioning of society.

These show that mathematical literacy requires learning mathematical concepts and principles that would be applicable to the individual and society’s life and activities; equip individuals the necessary skills in using mathematics to reason and make decisions; enable individuals to get a sense of the nature and power of the discipline in order to understand its role in the world.

To teach mathematical literacy, curriculum and instruction should therefore include these 3 R’s:

  • Relevant mathematical concepts, principles and procedures
  • Real-life context which can be investigated and modeled mathematically
  • Rich mathematical tasks that fosters conceptual understanding and development of skills and habits of mind

Check out these great books on mathematical literacy:

Posted in Curriculum Reform, Mathematics education

What is mathematical investigation?

Mathematical investigation refers to the sustained exploration of a mathematical situation. It distinguishes itself from problem solving because it is open-ended.

I first heard about math investigations in 1990 when I attended a postgraduate course in Australia.  I love it right away and it has since become one of my favorite mathematical activity for my students who were so proud of themselves when they finished their first investigation.

Problem solving is a convergent activity. It has definite goal – the solution of the problem. Mathematical investigation on the other hand is more of a divergent activity. In mathematical investigations, students are expected to pose their own problems after initial exploration of the mathematical situation. The exploration of the situation, the formulation of problems and its solution give opportunity for the development of independent mathematical thinking and in engaging in mathematical processes such as organizing and recording data, pattern searching, conjecturing, inferring, justifying and explaining conjectures and generalizations. It is these thinking processes which enable an individual to learn more mathematics, apply mathematics in other discipline and in everyday situation and to solve mathematical (and non-mathematical) problems.

Teaching through mathematical investigation allows  for students to learn about mathematics, especially the nature of mathematical activity and thinking. It also make them realize that learning mathematics involves intuition, systematic exploration, conjecturing and reasoning, etc and not about memorizing and following existing procedures. The ultimate aim of mathematical investigation is develop students’ mathematical habits of mind.

Although  students may do the same mathematical investigation, it is not expected that all of them will consider the same problem from a particular starting point.  The “open-endedness” of many investigation also means that students may not completely cover the entire situation. However, at least for a student’s own satisfaction, the achievement of some specific results for an investigation is desirable. What is essential is that the students will experience the following mathematical processes which are the emphasis of mathematical investigation:

  • systematic exploration of the given situation
  • formulating problems and conjectures
  • attempting to provide mathematical justifications for the conjectures.

In this kind of activity and teaching, students are given more opportunity to direct their own learning experiences. Note that a problem solving task can be turned into an investigation task by extending the problem by varying for example one of the conditions. To know more about problem solving and how they differ with math investigation read my post on Exercises, Problem Solving and Math Investigation.

Some parents and even teachers complain that students are not learning mathematics in this kind of activity. Indeed they won’t if the teacher will not discuss the results of the investigation, highlight and correct the misconceptions, synthesize students’ findings and help students make connection among the math concepts covered in the investigation. This goes without saying that teachers should try the investigation first before giving it to the students.

I think mathematical investigation is constructivist teaching at its finest. For a sample lesson, read Polygons and algebraic expressions.

The book below offers investigation “start-up” for college students.

Posted in Curriculum Reform

Mathematical habits of mind

Learning mathematics is not just about knowing, understanding, and applying its concepts, principles and all the associated mathematical procedures and algorithms. It’s not just even about  acquiring the capacity to solve problem,  to reason, and to communicate. It is about making these capacities part of students’ thinking habits. It is only then that one can be said to be mathematically literate.

The test for example that solving problem is no longer just a skill but has become part of students thinking habit is when students are doing it without the teachers still having to ask “Can you explain why you solve it that way?” or “Can you do it another way?” Those should be automatic to students.

“A habit is any activity that is so well established that it occurs without thought on the part of the individual.”

Here’s is a list of important mathematical habits of mind that I believe every teacher should aim for in any mathematics lesson.

Habit #1: Searching for Patterns

Students should develop the habit of

  • generating cases and generalizing patterns
  • looking-out for short-cuts that arise from patterns in calculations
  • investigating special cases, extreme cases from patterns observed

Habit #2: Reasoning

Students should develop the habit of

  • explaining the positions they take
  • providing mathematical evidence/justification for the conjectures or generalizations they make
  • testing conjectures by generating cases both special and extreme
  • justifying why a generalization will work for all cases or for some cases only

Habit #3: Solving and posing problems

Students should develop the habit of

  • always looking for alternative solutions to problems
  • extending problems and solutions to more general case
  • solving problems algebraically, geometrically, numerically
  • asking clarifying and extending questions

Habit # 4: Making connections

Students should develop the habit of

  • Linking algebra, number, geometry, statistics and probability
  • Finding/devising equivalent representations of the same concept
  • Linking math concepts to real-world situation

Habit #5: Communicating mathematically

Students should develop the habit of

  • using appropriate notation and representation
  • noticing faulty, incomplete or misleading use of numbers

Habit #6: Reflecting and self-directing learning

Habit is a cable

All these are only possible  in an environment where students are engage in problem solving and mathematical investigation tasks.

If you want to know more about mathematical thinking, the books below are great read.

Posted in Algebra, Assessment

Assessing understanding of graphs of functions

Problems about graphs of functions can be grouped into interpretation or construction tasks. The tasks may involve interpreting individual points, an interval, or the entire graph. The same may be said about construction tasks. It may involve point-plotting,  a part of the graph, or constructing the whole graph.

Tasks involving constructing graphs are considered more difficult than interpreting graphs tasks but with the available graphing technology, constructing graphs is now easy.  But not when you have to construct a relationship, not just graphs! In fact, I would consider it as an indicator of students deep understanding of graphs and functions when he or she can interpret and reason in terms of relationship shown in the graphs and from these be able to construct a new relationship, a new function. Here is a task you can use to assess this level of understanding. Note that in this task the graphs are not on grids to encourage holistic analysis of the graph rather than point-by-point. Interpreting graphs not on grids encourages algebraic thinking.

graphs
Relating graphs

Below is a a sample a Year 8 student solution to the task above. This answer indicates that the student understands graphs and the function it is representing but  he/she could still not reason in terms of relationship so resorted to interpreting individual points in x vs y and y vs z in order to relate x and z.

solutions by point-by-point analysis

The figure below shows a solution of a Year 10 student who could reason in terms of the relationships of the variables represented by the graphs.

reasoning in terms of relationship

A similar solution to this would be “x is directly proportional y but y is inversely proportional to z hence x would also be inversely proportional to z”.

Both solutions are correct and both solved the problem completely. Note that initially students will use the first solution just like the Year 8 student. The Year 10 however should be expected and encouraged to reason in terms of relationship.

A good assessment task not only assesses students’ mathematical knowledge and skills but also assesses the level of thinking and reasoning students are operating on. See posts on features of good problem solving tasks.