Posted in Teaching mathematics

How to orchestrate a mathematically productive class discussion

Show and tell activity (aka lecture method) may work for some but never in a mathematics class. Getting students to explain and ask questions are nice but only when the explanation and the questions are mathematical. Reasoning and justifying are good habits of mind but they are only productive if they are based on mathematical principles.  Explaining, asking questions, and substantiating one’s conjecture or generalization make a productive class discussion but they are only productive for learning mathematics if the mathematics is kept in focus. Orchestrating a productive class discussion is by far the most challenging work of mathematics teaching. Stein, Engle, Smith, and Hughes* (https://doi.org/10.1080/10986060802229675) proposed five practices for moving beyond show and tell in teaching mathematics. I have always practiced them in my own teaching whether with students or with teachers and I find them effective especially when the lesson involve cognitively demanding tasks and with multiple solutions. Continue reading “How to orchestrate a mathematically productive class discussion”

Posted in Mathematics education

NCTM Process Standards vs CCSS Mathematical Practices

The NCTM process standards, Adding it Up mathematical proficiency strands, and Common Core State Standards for mathematical practices are all saying the same thing but why do I get the feeling that the Mathematical Practices Standards is out to get the math teachers.

The NCTM’s process standards of problem solving, reasoning and proof, communication, representation, and connections describe for me the nature of mathematics. They are not easy to understand especially when you think that school mathematics is about stuffing students with knowledge of content of mathematics. But, over time you find yourselves slowly shifting towards structuring your teaching in a way that students will understand and appreciate the nature of mathematics.

The five strands of proficiency were also a great help to me as a teacher/ teacher-trainer because it gave me the vocabulary to describe what is important to focus on in teaching mathematics.

With the Mathematical Practices Standards I had this picture of myself in the classroom with a checklist of the standards in one hand and a lens on the other looking for evidence of proficiency. The NCTM and Adding it Up standards actually said more about math. The ones in Common Core are saying more about what students should attain. I wonder which will encourage ‘teaching to the test’. The day teachers start to ‘teach to the test’ is the beginning of the end of any education reform.

NCTM Process Standards

Five Strands of Mathematical Proficiency

CCSS Mathematical Practices

Problem Solving

  1. Build new mathematical knowledge through open-ended questions and more-extended exploration;
  2. Allow students to recognize and choose a variety of appropriate strategies to solve problems;
  3. Allow students to reflect on their own and other strategies for solving problems.

Reasoning and Proof

  1. Recognize and create conjectures based on patterns they observe;
  2. Investigate math conjectures and prove that in all cases they are true or that one counterexample shows that it is not true;
  3. Explain and justify their solutions.

Communication:

  1. Organize and consolidate their mathematical thinking in written and verbal communication;
  2. Communicate their mathematical thinking clearly to peers, teachers, and others;
  3. Use mathematical vocabulary to express mathematical ideas precisely.

Connections

  1. Understand that mathematical ideas are interconnected and that they build and support each other;
  2. Recognize and apply connections to other contents;
  3. Solve real world problems with mathematical connections.

Representation

  1. Emphasize a variety of mathematical representations including written descriptions, diagrams, equations, graphs, pictures, and tables;
  2. Select, apply, and translate among mathematical representations to solve problems;
  3. Use mathematics to model real-life problem situations.

Conceptual Understanding refers to the “integrated and functional grasp of mathematical ideas”, which “enables them [students]
to learn new ideas by connecting those ideas to what they already know.”

Procedural fluency is defined as the skill in carrying out procedures flexibly, accurately, efficiently, and
appropriately.

Strategic competence is the ability to formulate, represent, and solve mathematical problems.

Adaptive reasoning is the capacity for logical thought, reflection, explanation, and justification.

Productive disposition is the
inclination to see mathematics as sensible, useful, and worthwhile, coupled with a belief in diligence and one’s own efficacy.

Mathematically proficient students …

  • Make sense of problems and persevere in solving them.
  • Reason abstractly and quantitatively.
  • Construct viable arguments and critique the reasoning of others.
  • Model with mathematics.
  • Use appropriate tools strategically.
  • Attend to precision.
  • Look for and make use of structure.
  • Look for and express regularity in repeated reasoning.

Image from 123RF

Posted in Algebra, Graphs and Functions, High school mathematics

What is an inverse function?

In mathematics, the inverse function is a function that undoes another function. For example,  given the function f(x) = 2x. If you input a into the function f, the output is 2a. The inverse function of  f(x) is the function g(x) such that if you input 2a into g(x) its output is a. Now what is g(x) equal to? How does its graph look like? Is the inverse of a function also a function? These are the basic questions students need to answer about inverse function.

How to teach the inverse function
Functions and their inverses

The idea of inverse function can be taught deductively by starting with its definition then asking students to find the equation of the inverse function by switching the x and y in the original function then expressing the equation in the form y = f(x). This is an approach I will not do of course as I always like my students to discover things for themselves and see and express relationships in all three representations: numerical (ordered pairs or table of values), geometrical (graphs) and symbolic (equation) representations.

In teaching the inverse function it is important for students to realize that not all function have an inverse that is also a function, that the graph of the inverse of a function is a reflection along the line y = x, and that the inverse function does not necessarily belong to the same family as the given function.

The concept of inverse function is usually taught to introduce the logarithmic function as inverse of exponential function. Important ideas about inverse function such as those I mentioned are not usually given much attention. Perhaps teachers are too excited to do the logarithmic functions.

I suggest the following sequence for teaching inverse. I’m sure many teachers and textbooks also do it this way. What I may just be pointing out is the reason behind the sequence. I also developed three worksheets using GeoGebra. The worksheet is interactive so that students will be able to make sense of inverse of function on their own.

Start with linear function. Its inverse is also a function and it’s easy for students to figure out that all they need to do is to switch the x‘s and y‘s then solve for y to find the equation. You may need to see the inverse of linear function activity so you can make sense of what I am saying.

The next activity should now involve a quadratic function. The purpose of this activity is to create cognitive conflict as it’s inverse is not a function. The domain needs to be restricted in order to get an inverse that is also a function. Depending on your class, the algebraic part (finding equation of the inverse) can be done later but it’s important for the students at this point to see the graph of the inverse of a quadratic to convince them that indeed it is not a function. Click the link to open the activity inverse of quadratic functions.

The third activity will be the inverse of exponential function. By this time students will be more careful in assuming that the inverse of a function is always a function. Except this time it is! It is also one-to-one just like linear, but it’s equation in y belong to a new family of function – the logarithmic function. Click the link for the activity on inverse of  exponential functions.

Teaching principles

There are at least three math teaching principles illustrated in the suggested lesson sequencing for teaching the inverse function and introducing logarithmic function.

  1. Connecting with previously learned concepts. Start with something that students can already do but in a different context. In the above examples they are already familiar with linear function and they already know how to find its equation.
  2. Creating cognitive conflict. The purpose is to challenge possible assumptions and expose possible misconceptions.
  3. Making connections. Mathematics is only understood and hence powerful when there is a rich and strong connections among related concepts, representations, and procedures.

You may find the Precalculus: Functions and Graphs a good reference.

Posted in Algebra, Geogebra

Making connections: Square of a sum

One of the ways to connect concepts in mathematics is to make use of the same representation to teach mathematics. Let me take for an example the visual representation of the square of a sum, (a+b)^2 = a^2+2ab+b^2 . This concept is usually ‘concretized’ using algebra tiles. However, if you have facility for computer technology I would recommend using the GeoGebra applet below: [iframe https://math4teaching.com/wp-content/uploads/2011/09/square_of_a_sum.html 650 550]

Suggested tasks:

1. You can show the grid (click view to do that) to teach Grade 3 pupils about area. You can change the dimensions of the rectangles and squares by dragging D.

2. For older students you can give this task (don’t show grid but you can show lengths then drag D): The square AGHC is dissected into rectangles and squares.If the sides of square AEFD is 2 units and that of square DIJC is 3 units,

a) calculate the area of the other rectangles and square?

b) write two numerical expressions representing two ways of getting the area of the big square.

4. Having worked with numerical expressions, students will be ready to work with variables: If AD is x and DC is y, find two expressions for the area of the square AGHC. This of course leads to the identity (x+y)^2 = x^2 + 2xy + y^2 . The popular FOIL method should only come after this activity. For the record, I’m not a fan of this method.

5. This representation can also be used to teach how to calculate expressions such as 0.75 x 0.75 +0.25 x 0.75 x 2 + 0.25 x 0.25. This is one way to help students appreciate an application of the square of a binomial.

6. You can also use this figure to teach the idea of function: If you drag D along AC, how will a change in the distance of AD affect the area of the rectangles and squares?

a) Create a table comparing the area of the quadrilaterals as the side AD increases from 0 to 5 units.

b) Do as in a) but this time compare the perimeters.

c) Express the area/perimeter of each quadrilateral as a function of the length of AD.

I will write about square of a difference in the next post.