Posted in Elementary School Math, Number Sense

Who says subtracting integers is difficult?

Subtracting integers should not be difficult for most if they make sense to them. In first grade, pupils learn that 100 – 92 means take away 92 from 100. The minus sign (-) means take away or subtract.

After two or three birthdays, pupils learn that 100 – 92 means the difference between 100 and 92. The minus sign (-) means difference. The lucky ones will have a teacher that would line up numbers on a number line to show that the difference is the distance between the two numbers.

After a couple of birthdays more, pupils learn that you can actually take away a bigger number from a smaller number. The result of these is a new set of numbers called negative numbers. That is,

small numberbig number = negative number

The negative numbers are the opposites of the counting numbers they already know which turn out to have a second name, positive. The positive and the negative numbers can even be arranged neatly on a line with 0, which is neither a positive nor a negative number, between them. The farther left a negative number is from zero the smaller the number. Of course, the pupils already know that the farther right a positive number is from zero the bigger it is. It goes without saying that negative numbers are always lesser than positive numbers in value. This is easier said than understood. When I tried this out, it was not obvious for many of the learners I have to give examples of each by comparing the numbers and defining that as the number gets further to the left the lesser in value.

Now, what is 92 – 100 equal to? The difference between 92 and 100 is 8. But because we are taking away a bigger number from a smaller number, the result must be a negative number. That is 92 – 100 = -8. Notice that the meaning of the sign, -, before 8 is different from that between 92 and 100.

What about -100 – 92? Because -100 is 100 units away from the left of 0 and 92 is 92 units away from the right of 0, the total distance or difference between them is 192. But because we are taking away a bigger number, 92, from a smaller number, -100, the answer must be negative (-). That is, -100 – 92 = -192.

And -100 – -92? Easy. Both are on the left of 0. The difference or distance between them is 2 but because -92 is bigger than -100, the answer should be a negative number. That is, -100 – -92 = -8.

We  shouldn’t have a problem with 100 – -92. These numbers are 192 units apart and because we are taking away a small number from a bigger number, the answer must be positive. That had always been the case since first grade.

Who says we need rules for subtracting integers?

Click the links for other ideas for teaching integers with conceptual understanding

Posted in Algebra, High school mathematics, Math investigations

Teaching combining algebraic expressions with conceptual understanding

In Math investigation about polygons and algebraic expressions I presented possible problems that students can explore. In this post, I will share some ideas on how the simple investigation of drawing polygons with the same area can be used as an introductory lesson to teach operations with algebraic expressions with meaning and understanding. Like the rest of the lessons in this blog, this lesson is not so just about learning the math but also making sense of the math and engaging students in problem solving.

The lesson consists of four problem solving tasks to scaffold  learning of adding, subtracting, multiplying and dividing algebraic expression with conceptual understanding.

Problem 1 – What are the different ways can you find the area of each polygons? Write an algebraic expression that would represent each of your method.

The diagram below are just some of the ways students can find the area of the polygons.

1. by counting each square
2. by dissecting the polygons into parts of a rectangle
3. by completing the polygon into a square or rectangle and take away parts included in the counting
4. by use of formula

The solutions can be represented by the algebraic expressions written below each polygon. Draw the students’ attention to the fact that each of these polygons have the same area of 5x^2 and that all the seven expressions are equal to5x^2 also.

Multiple representations of the same algebraic expressions

Problem 2 – (Ask students to draw polygons with a given area using algebraic expressions with two terms like in the above figure. For example a polygon with area 6x^2-x^2.

Problem 3 – (Ask students to do operations. For example 4.5x^2-x^2.)

Note: Whatever happens, do not give the rule.

Problem 4 – Extension: Draw polygons with area 6xy on an x by y unit grid.

These problem solving tasks not only links geometry and algebra but also concepts and procedures. The lesson also engages students in problem solving and in visualizing solutions and shapes. Visualization is basic to abstraction.

There’s nothing that should prevent you from extending the problem to 3-D. You may want to ask students to show the algebraic expression for calculating the surface area of  solids made of five cubes each with volume x^3. I used Google SketchUp to draw the 3-D models.

some possible shapes made of 5 cubes

Point for reflection

In what way does the lesson show that mathematics is a language?