Posted in Algebra, Calculus

8 Different Ways to Think of the Derivative

In his paper The Transition to Formal Thinking in Mathematics, David Tall presents W.P. Thurston’s seven different ways to think of the derivative:

  1. Infinitesimal: the ratio of the infinitesimal change in the value of a function to the infinitesimal change in a function.
  2. Symbolic: the derivative of x^n is nx^n?1, the derivative of sin(x) is cos(x), the derivative of f ? g is f ? ? g ? g? , etc.
  3. Logical: f ?(x) = d if and only if for every ? there is a ? such that when 0 <|?x|< ? , then slope
  4. Geometric: the derivative is the slope of a line tangent to the graph of the function, if the graph has a tangent.
  5. Rate: the instantaneous speed of f (t) , when t is time.
  6. Approximation: The derivative of a function is the best linear approximation to the function near a point.
  7. Microscopic: The derivative of a function is the limit of what you get by looking at it under a microscope of higher and higher power. (Thurston, 1994.)

David Tall argued that the list excluded the global concept of local straightness so he added added the eighth that he believes that other 7 can be built.

8. Embodied: the (changing) slope of the graph itself.

In the same paper, David Tall presents a learning framework for derivative based on his Three Worlds of Mathematics Framework.

understanding derivative

Posted in Mathematics education

Levels of Problem Solving Skills

Here is one way of describing students levels of problem solving skills in mathematics. I call them levels of problem solving skills rather than process of reflective abstraction as described in the original paper. As math teachers it is important that we are aware of our students learning trajectory in problem solving so we can properly help them move into the next level.problem solving

Level 1 – Recognition

Students at this level have the ability to recognize characteristics of a previously solved problem in a new situation and believe that one can do again what one did before. Solvers operating at this level would not be able to anticipate sources of difficulty and would be surprised by complications that might occur as they attempted their solution. A student operating at this level would not be able to mentally run-through a solution method in order to confirm or reject its usefulness.

Level 2 – Re-presentation

Students at this level are able to run through a problem mentally and are able to anticipate potential sources of difficulty and promise. Solvers who operate at this level are more flexible in their thinking and are not only able to recognize similarities between problems, they are also able to notice the differences that might cause them difficulty if they tried to repeat a previously used method of solution. Such solvers could imagine using the methods and could even imagine some of the problems they might encounter but could not take the results as a given. At this level, the subject would be unable to think about potential methods of solution and the anticipated results of such activity.

Level 3 – Structural abstraction

Students at this level evaluates solution prospects based on mental run-throughs of potential methods as well as methods that have been used before. They are able to discern the characteristics that are necessary to solve the problem and are able to evaluate the merits of a solution method based on these characteristics. This level evidences considerable flexibility of thought.

Level 4 – Structural awareness

A solver operating at this level is able to anticipate the results of potential activity without having to complete a mental run-through of the solution activity. The problem structure created by the solver has become an object of reflection. The student is able to consider such structures as objects and is able to make judgments about them without resorting to physically or mentally representing methods of solution.

The levels of problem solving skills described above indicate that as solvers attain the higher levels they become increasingly flexible in their thinking. This framework is from the dissertation of Cifarelli but I read it from the paper The roles of reification and reflective abstraction in the development of abstract thought: Transitions from arithmetic to algebra by Tracy Goodson-Espy. Educational Studies in Mathematics 36: 219–245, 1998. © 1998 Kluwer Academic Publishers. Printed in the Netherlands.

You may also be interested on Levels of understanding of function in equation form based on my own research on understanding function.

Image Credit: vidoons.com/how-it-works

Posted in Algebra, Assessment, High school mathematics

Levels of understanding of function in equation form

There are at least three representational systems used to study function: graphs, tables and equations. But unlike graphs and tables that are used to visually show the relationships between two varying quantities, students first experience with equation is not as a representation of function but a statement which state the condition on a single unknown quantity.  Also, the equal sign in the early grades is taught to mean “do the operation” and not to denote equality between the quantities of both sides of the sign. To complicate the matter, when equation is used as a representation of function, it takes an additional meaning, that of a representation of two varying quantities! For example, let y be number of t-shirts and x be the number of t-shirts to be printed. If the cost of printing a t-shirt is 2.50 then the function that defines y in terms of x is y = 2.50x. Understanding function equation form is not an easy concept for many students.

I believe that if mathematics teachers are aware of the differing level of abstraction in students’ thinking and reasoning  when they work with function in equation form then the teachers would be better equipped to design appropriate instruction to lead students towards a deeper understanding of this concept.Failure to do so would deprive students the opportunity to understand other advanced algebra and calculus topics.I would like to share a framework for assessing students’ developing understanding of function in equation form. This framework is research-based. You can download the full paper here or you can view the slides in my post Learning Research Study Module for Understanding Function.

The framework is in terms of levels of understanding. You can use it to design tasks or assess your students understanding of function in equation form. Each of these levels are “big ideas” or schemas in the understanding of function.
Level 1 – Equations are procedures for generating values.
Students at this level can find x given y or vice versa. Some can generate a number of pairs but not really see the equation as a rule for all pairs of values in a situation.
Level 2 – Equations are representations of relationships.
Students at this level understands domain and range, can generate pairs of values and graph it. They also know that that relationship is unique and true for the values in the domain and range.
Level 3 – Equations describe properties of relationships.
Students at this level can interpret the properties of the function like rate of change and intercepts form the equation but can do it by generating values.
Level 4 – Functions are objects that can be manipulated and transformed
This is the highest level. At this point students see the equation as a math object. They can do composition of function, can find its inverse by algebraic manipulation and can interpret the meaning or effect of the parameters to the graph of the function. 

You can reference the above framework:

Ronda, E. (2009). Growth points in students’ developing understanding of function in equation form. Mathematics Education Research Journal, 21, 31-53.