Posted in GeoGebra worksheets, Geometry

How to scaffold problem solving in geometry

Scaffolding is a metaphor for describing a type of facilitating a teacher does to support students’ own making sense of things. It is usually in the form of questions or additional information. In scaffolding learning, we should be careful not to reduce the learning by rote. In the case of problem solving for example, the scaffolds provided should not reduce the problem solving activity into one where students follow procedures disguised as scaffolds. So how much scaffolding should we provide? Where do we stop? Let us consider this problem:

ABCD is a square. E is the midpoint of CD. AE intersects the diagonal BD at F.

  1. List down the polygons formed by segments BD and AE in the square.
  2. How many percent of the area of square ABCD is the area of each of the polygons formed?

Students will have no problem with #1. In #2, I’m sure majority if not all will be able to compare the area of triangles ABD, BCD, AED and quadrilateral ABCE to the area of the square. The tough portion is the area of the other polygons – ABF, AFD, FED, and BCEF.

In a problem solving lesson, it is important to allow the learners to do as much as they can on their own first, and then to intervene and provide assistance only when it is needed. In problems involving geometry, the students difficulty is in visualizing the relationships among shapes. So the scaffolding should be in helping students to visualize the shapes (I actually included #1 as initial help already) but we should never tell the students the relationships among the geometric figures. I created a GeoGebra worksheet to show the possible scaffolding that can be provided so students can answer question #2. Click here to to take you to the GeoGebra worksheet.

 

Extension of the problem: What if E is 1/4 of its way from C to D? How many percent of the square will be the area of the three triangles and the quadrilateral? How about 1/3? 2/3? Can it be generalized?

Please share with other teachers. I will appreciate feedback so I can improve the activity. Thank you.

More Geometry Problems:

  1. The Humongous Book of Geometry Problems: Translated for People Who Don’t Speak Math
  2. Challenging Problems in Geometry

 

Posted in Algebra

Teaching the properties of equality through problem solving

problem solvingI like to teach mathematical concepts via problem solving. It right away engages students mind. It creates a need for learning a more systematic way of doing things and hence a reason for learning the concept. It provides a context for making connections. Most important of all, it gives students opportunity to learn before they are taught.

One of the ways of creating a problem solving task for this kind of lesson is to start by giving the solution/answer.  For example, a standard textbook task is to solve for x in an equation.  Why not do it the other way and ask students to find the equation given the solution?

Here is my favorite problem for introducing the properties of equality:

Write three equations in x with solution x = 5.

Fresh from their elementary school math experience of solving equation of the type  15 – ___ = 20 or x + 12.3 = 20, students will generate equations by trial and adjust. That is, they think of an equation then check if it gives x = 5 by substituting the value of x to the equation.  It will not take long for them to realize that this is something very tedious.

Other students will verify their equations by expressing the terms into equivalent structure. I explained this method in my previous post. This method is not also very efficient for some equations. But students have to experience these so that they will be able to appreciate the efficiency of solving equations using the properties of equality.

Usually when they already have at least two equations I will extend the task to:

Two of the equations should have x on both sides of the equal sign .

Challenge them further to think of a more systematic way for making the equations. You will not hear the bell ring before students will realize that all they need to do to have an x on both sides is to add or subtract x on both sides of the equal sign! (Multiplying or dividing by x is a different matter as there is a possibility that x can be zero). Now they know that those ubiquitous equations in their algebra textbooks did not just drop from they sky. They can even create one themselves. The students are applying the properties of equality before they even know what they are! Speaking of constructivist teaching here.

Teachers I shared this with were also very happy because they no longer have to do trial and adjust when they make exercises for solving equations.

Posted in Curriculum Reform, Mathematics education

What is mathematical investigation?

Mathematical investigation refers to the sustained exploration of a mathematical situation. It distinguishes itself from problem solving because it is open-ended.

I first heard about math investigations in 1990 when I attended a postgraduate course in Australia.  I love it right away and it has since become one of my favorite mathematical activity for my students who were so proud of themselves when they finished their first investigation.

Problem solving is a convergent activity. It has definite goal – the solution of the problem. Mathematical investigation on the other hand is more of a divergent activity. In mathematical investigations, students are expected to pose their own problems after initial exploration of the mathematical situation. The exploration of the situation, the formulation of problems and its solution give opportunity for the development of independent mathematical thinking and in engaging in mathematical processes such as organizing and recording data, pattern searching, conjecturing, inferring, justifying and explaining conjectures and generalizations. It is these thinking processes which enable an individual to learn more mathematics, apply mathematics in other discipline and in everyday situation and to solve mathematical (and non-mathematical) problems.

Teaching through mathematical investigation allows  for students to learn about mathematics, especially the nature of mathematical activity and thinking. It also make them realize that learning mathematics involves intuition, systematic exploration, conjecturing and reasoning, etc and not about memorizing and following existing procedures. The ultimate aim of mathematical investigation is develop students’ mathematical habits of mind.

Although  students may do the same mathematical investigation, it is not expected that all of them will consider the same problem from a particular starting point.  The “open-endedness” of many investigation also means that students may not completely cover the entire situation. However, at least for a student’s own satisfaction, the achievement of some specific results for an investigation is desirable. What is essential is that the students will experience the following mathematical processes which are the emphasis of mathematical investigation:

  • systematic exploration of the given situation
  • formulating problems and conjectures
  • attempting to provide mathematical justifications for the conjectures.

In this kind of activity and teaching, students are given more opportunity to direct their own learning experiences. Note that a problem solving task can be turned into an investigation task by extending the problem by varying for example one of the conditions. To know more about problem solving and how they differ with math investigation read my post on Exercises, Problem Solving and Math Investigation.

Some parents and even teachers complain that students are not learning mathematics in this kind of activity. Indeed they won’t if the teacher will not discuss the results of the investigation, highlight and correct the misconceptions, synthesize students’ findings and help students make connection among the math concepts covered in the investigation. This goes without saying that teachers should try the investigation first before giving it to the students.

I think mathematical investigation is constructivist teaching at its finest. For a sample lesson, read Polygons and algebraic expressions.

The book below offers investigation “start-up” for college students.

Posted in Curriculum Reform, Mathematics education

Teaching through Problem Solving

Problem solving is not only the reason for teaching and learning mathematics. It is also the means for learning it. In the words of Hiebert et al:

Students should be allowed to make the subject problematic. … Allowing the subject to be problematic means allowing students to wonder why things are, to inquire, to search for solutions, and to resolve incongruities. It means that both curriculum and instruction should begin with problems, dilemmas, and questions for students. (Hiebert, et al, 1996, p. 12)

For years now, UP NISMED in-service training programs for teachers have organized mathematics lessons for teachers using the strategy we call Teaching through Problem Solving (TtPS). This teaching strategy had also been tried by teachers in their classes and the results far outweighed the disadvantages anticipated by the teachers.

Teaching through problem solving provides context for reviewing previously learned concepts and linking it to the new concepts to be learned. It provides context for students to experience working with the new concepts before they are formally defined and manipulated procedurally, thus making definitions and procedures meaningful to them.

What are the characteristics of a TtPS?

  1. main learning activity is problem solving
  2. concepts are learned in the context of solving a problem
  3. students think about math ideas without having the ideas pre-explained
  4. students solve problems without the teacher showing a solution to a similar problem first

What is the typical lesson sequence organized around TtPS?

  1. An which can be solved in many ways is posed to the class.
  2. Students initially work on the problem on their own then join a group to share their solutions and find other ways of solving the problem. (Role of teacher is to encourage pupils to try many possible solutions with minimum hints)
  3. Students studies/evaluates solutions. (Teacher ask learners questions like “Which solutions do you like most? Why?”)
  4. Teacher asks questions to help students make connections among concepts
  5. Teacher/students extend the problem.

What are the theoretical underpinnings of TtPS strategy?

  1. Constructivism
  2. Vygotsky’s Zone of Proximal Development (ZPD)

Click here for sample lesson using Teaching through Problem Solving to teach the tangent ratio/function.

The best resource for improving one’s problem solving skills is still these books by George Polya.

How to Solve It: A New Aspect of Mathematical Method (Princeton Science Library)

Mathematical Discovery on Understanding, Learning, and Teaching Problem Solving, Volume I