Posted in Algebra

What is algebra?

Didn’t we say in our algebra class that in the grades they study about numbers and so now they will be studying letters instead? Didn’t we say that in algebra we now use x instead of box (in 3 + ___ = 15, we now write 3 + x = 15)? And isn’t it that since this announcement our algebra class activity has been about finding that 24th letter?

Well, we reap what we sow.

what is algebra

Just  a friendly reminder to take the teaching of variables and unknown quantities with meaning.

For a serious discussion about what algebra is, I  suggest the following articles.

1. What is Algebra? by Prof. Keith Devlin

2. Algebra vs. Arithmetic

Posted in Geometry

Unpacking mathematics – a geometry example

Engineers, mathematicians, and mathematics teachers all deal with mathematics but it is only the math teacher who talks about math to non-mathspeakers and initiate them to ‘mathspeak’. To do this, the math teachers should be able to ‘unpack’ for the students the mathematics that mathematicians for years have been so busy ‘packing’ (generalising  and abstracting) so that these learners will learn to do the basics of packing by themselves. This is in fact the real job description of a mathematics teacher. I won’t comment about the remuneration as this is not this blog is about. I thought it would be best for me to continue sharing about the ways we can unpack some of the important ideas in mathematics as this is the mission of this blog. Just in case you haven’t read the blog description, this blog is not about making mathematics easy because math is not so stop telling your students that it is because that makes you a big liar. What we should try to do as math teacher is to make math make sense because it does. This means that your lesson should be organised and orchestrated in a way that shows math does makes sense by making your lesson coherent and the concepts connected.

Today I was observing a group of teachers working on a math problem and then examining sample students solutions. The problem is shown below:

congruent triangles

The teachers were in agreement that there is no way that their own students will be able to make the proof even if they know how to prove congruent triangles and know the properties of a parallelogram. They will not think of making the connection between the concepts involved. I thought their concerns are legitimate but I thought the problem is so beautiful (even if the way it is presented is enough to scare the wits out of the learners) that it would be a shame not to give the learners the chance to solve this problem. So what’s my solution to this dilemma? Don’t give that problem right away. You need to unpack it for the learners. How? To prove that AFCE is a parallelogram, learners need to know at least one condition for what makes it a parallelogram. To be able to do that they need to know how to prove triangle congruence hence they need to be revised on it. To be able to see the necessity of triangle congruence in proving the above problem, learners need to see the triangles as part of the parallelogram. So how should the lesson proceed?

Below is an applet I developed that teachers can use to initiate their learners in the business of making proofs where they apply their knowledge of proving triangles and properties of quadrilaterals, specifically to solving problems similar to the above problem.  Explore the applet below. Note the order of the task. You start with Task 1 where the point in the slider is positioned at the left endpoint. Task 2 should have the point positioned at the right end point. You can have several questions in this task. Task 3 should have the point between the endpoints of the slider. Of course you can also present this using static figures but the power of using a dynamic one like the geogebra applet below not only will make it interesting but the learners sees how the tasks are related.

Task 1

  1. What do the markings in the diagram tell you about the figure ABCD? What kind of shape is ABCD? Tell us how you know.
  2. Do you think the two triangles formed by the diagonals are congruent? Can you prove your claim?

Task 2 – Which pairs of triangles are congruent? Prove your claims

Task 3 – What can you say about the shape of AFCE? Prove your claim.

[iframe https://math4teaching.com/wp-content/uploads/2013/05/Parallelogram_Problem.html 550 500]

Here’s the link to the applet  Parallelogram Problem

Note that Task 3 has about 4 different solutions corresponding to the properties of a parallelogram. I will show it in my future post.

More of this type: Convert a Boring Geometry Problem to Exploratory Version

Posted in Geometry, Math videos

A Geometric Model for the Lunch Date Problem

geometric modelA mathematical model is an abstract model that uses mathematical language to describe and understand a situation. Here’s a nice video that presents a model for the Lunch Date Problem. The video below shows a step-by-step tutorial using SketchPad to build a geometric model of the problem. What is nice about this video is that it still leaves the solving to the students. The resulting geometric model leaves enough information for students to figure out a solution.

The Lunch Date Problem

You and a friend arrange to meet between 12:00 and 1:00 in the afternoon. After a week neither of you remembers the exact meeting time. As a result, it is possible for you arrive at random between 12:00 and 1:00 and waits exactly 15 minutes for your friend to arrive. After 15 minutes, each of you leaves if the other person has not arrived. What is the probability that the two of you will meet?

Mathematical modelling involves the use of mathematics to understand a real world problem. Click What is mathematical modelling? to learn more about it.

 

Posted in Elementary School Math, Number Sense

Why do we ‘invert’ the divisor in division of fractions

The following sequence of tasks shows how we can teach a procedure for dividing fractions, conceptually. The technique involves the same idea used for finding equivalent fraction or proportions – multiplying the upper and lower number of a proportion by the same number preserves the proportion. This is something that they learned before. The task of division of fractions becomes a simple extension of finding an equivalent fraction.

Teaching Sequence on Division of Fractions
Task 1 – Find fractions equivalent to the fraction 5/8.

This should be easy for learners as all they needed to do is to multiply the same number in the numerator and denominator. This is more of a revision for them.

Task 2 – Find fractions equivalent to

fraction divided by wholeHere they will apply the same idea used in task 1: If you multiply, the same number (except 0) to numerator and denominator, you produce equivalent fractions. You can ask the students to classify the fractions they made. One group I’m sure will have a fraction for numerator and whole number for denominator; another group will have fractions for both numerator and denominator; and, another will have whole numbers for numerator and denominator. The last group is what you want. This fraction is in simplest form. They should be ready for Task 3 after this.

Task 3 – Find the fraction in simplest form equivalent to

fraction divided by a fraction

From here you can ask the students to express the fraction as a division (this is one of the meaning of fraction – an indicated division) and rework their solution. It should be something like this:

dividing by fraction

You can challenge your students to find the shortest possible solution of getting the correct answer. It will involve the same idea of multiplying the dividend and the divisor by the same number. I’m sure that after doing the tasks above, they will be able to figure out the following solution which now leads to the the procedure ‘when dividing fractions, just multiply it by the reciprocal of the divisor’:

dividing by fraction

Procedural fluency does not mean doing calculation with speed and accuracy even without understanding. Remember that procedure is only powerful and useful in problem solving when students understand what it means and why the procedure is such. I suggest you also read my post on what it means to understand fractions and math knowledge needed by teachers to teach fractions and decimals.

Note:

The above lesson is not just about division of fractions. I made it in such a way that weaved in the lesson are the ideas of equivalent fractions, proportion, the property that when you multiply same number to the numerator (or dividend) and to the denominator (divisor) it does not change the value of the quotient, division by 1, etc. Working with the tasks engages students to the same process/technique they will be applying when they work with rational algebraic expressions. The main point is to use the lesson on division of fractions as context to make connections and to teach important ideas in mathematics. I think this is how we should teach mathematics.