Posted in Algebra, Graphs and Functions, High school mathematics

What is an inverse function?

In mathematics, the inverse function is a function that undoes another function. For example,  given the function f(x) = 2x. If you input a into the function f, the output is 2a. The inverse function of  f(x) is the function g(x) such that if you input 2a into g(x) its output is a. Now what is g(x) equal to? How does its graph look like? Is the inverse of a function also a function? These are the basic questions students need to answer about inverse function.

How to teach the inverse function
Functions and their inverses

The idea of inverse function can be taught deductively by starting with its definition then asking students to find the equation of the inverse function by switching the x and y in the original function then expressing the equation in the form y = f(x). This is an approach I will not do of course as I always like my students to discover things for themselves and see and express relationships in all three representations: numerical (ordered pairs or table of values), geometrical (graphs) and symbolic (equation) representations.

In teaching the inverse function it is important for students to realize that not all function have an inverse that is also a function, that the graph of the inverse of a function is a reflection along the line y = x, and that the inverse function does not necessarily belong to the same family as the given function.

The concept of inverse function is usually taught to introduce the logarithmic function as inverse of exponential function. Important ideas about inverse function such as those I mentioned are not usually given much attention. Perhaps teachers are too excited to do the logarithmic functions.

I suggest the following sequence for teaching inverse. I’m sure many teachers and textbooks also do it this way. What I may just be pointing out is the reason behind the sequence. I also developed three worksheets using GeoGebra. The worksheet is interactive so that students will be able to make sense of inverse of function on their own.

Start with linear function. Its inverse is also a function and it’s easy for students to figure out that all they need to do is to switch the x‘s and y‘s then solve for y to find the equation. You may need to see the inverse of linear function activity so you can make sense of what I am saying.

The next activity should now involve a quadratic function. The purpose of this activity is to create cognitive conflict as it’s inverse is not a function. The domain needs to be restricted in order to get an inverse that is also a function. Depending on your class, the algebraic part (finding equation of the inverse) can be done later but it’s important for the students at this point to see the graph of the inverse of a quadratic to convince them that indeed it is not a function. Click the link to open the activity inverse of quadratic functions.

The third activity will be the inverse of exponential function. By this time students will be more careful in assuming that the inverse of a function is always a function. Except this time it is! It is also one-to-one just like linear, but it’s equation in y belong to a new family of function – the logarithmic function. Click the link for the activity on inverse of  exponential functions.

Teaching principles

There are at least three math teaching principles illustrated in the suggested lesson sequencing for teaching the inverse function and introducing logarithmic function.

  1. Connecting with previously learned concepts. Start with something that students can already do but in a different context. In the above examples they are already familiar with linear function and they already know how to find its equation.
  2. Creating cognitive conflict. The purpose is to challenge possible assumptions and expose possible misconceptions.
  3. Making connections. Mathematics is only understood and hence powerful when there is a rich and strong connections among related concepts, representations, and procedures.

You may find the Precalculus: Functions and Graphs a good reference.

Posted in Algebra, Calculus

Teaching the derivative function without really trying

New mathematical ideas are usually built on another mathematical idea or ideas. Because of this, the teaching of mathematics if it is to make sense to students, should reflect this ‘building on’ process. Students should be able to see how the new idea is connected to what they already know. Good teaching of mathematics also demand that this new knowledge be useful and connected to the mathematics that students will encounter later.

Here is an example of a lesson that teaches the idea of derivative without really teaching it yet. This means that you can introduce this in Year 9 or 10 in their lesson about graphs of second degree function. The only requirement is that they understand the function of the form f(x) = ax^2. The task requires determining the equation of linear function of the form y = 2ax, which happens to be the derivative of ax^2. Of course you will not introduce the term derivative at this year level. You are just planting the seed for this important concept which students will encounter later.

The lesson uses the applet below. Of course, much of the success of the lesson will still be in questions you will asked after students initial exploration of the applet. You can find my proposed questions for discussion below the applet. [iframe https://math4teaching.com/wp-content/uploads/2012/02/Deriving_function_from_ax_2.html 750 620]

Questions for discussion

  1. You can move point A but not point B. Point B moves with A. What does this imply?
  2. What do you notice about the position of B in relation to the position of A?
  3. What is the path (locus) of point B? Right click it and choose TRACE then move A to verify your conjecture.
  4. What is the same and what is different about the coordinates of points A and B?
  5. To what does the coordinates of B depends on?
  6. What is the equation of the line traced by B?
  7. Refresh the applet then use the slider to change the equation of the graph, say a=3. What is the equation of the line traced by B this time?
  8. What do you think will be the equation of the path of B if the graph is f(x) = ax^2

By the end of this lesson students should have the intuitive notion of derivative and can find its equation given the function f(x) = ax^2.

There are actually 8 ways to think of the derivative. If you want to know more about Calculus, here’s a good reference:

The Calculus Direct: An intuitively Obvious Approach to a Basic Understanding of the Calculus for the Casual Observer

 

Posted in Algebra, High school mathematics

Using cognitive conflict to teach solving inequalities

One way to teach and assess students understanding of math concepts and procedures is to create a cognitive conflict. Here is one way you can create cognitive conflict in solving inequalities:

To solve the inequality x – 7 > 5, the process usually involve adding 7 to both sides of the inequality.

solving_inequality

This process uses the principle a > b then a + c > c. There is no change in the inequality sign since the same number is added to both side.

Now, what if we add 7 to the left side of the inequality and 6 to the right side?

cognitive conflict

The process uses this principle: If a > b, cd then a + c > d. Should this create a change in the inequality sign? Certainly not. There should be no change in the inequality sign when a bigger (smaller) number is added to the bigger (smaller) number side.  Both of these processes create a cognitive conflict and will be a good opportunity for your class to discuss what solving inequality means and, compare the processes of solving equations and inequalities. Comparing and contrasting procedures is also a good strategy to developing conceptual understanding.

For those interested to learn more about inequalities I recommend this book:Introduction to Inequalities (New Mathematical Library)

Posted in Algebra, High school mathematics

Free online calculator for problem solving and math investigation needs

Meta-Calculator is  a free online calculator that should serve the needs of almost any high school student/college student for problem solving and math investigations tasks. It would also be useful for anyone who needs to analyze statistical data, do lots of calculations , graph equations or create images of equations—you can just hop on the internet browse to the webpage and download the graph!

Meta-Calculator is a multi purpose calculator that works both in your browser via the Flash Plugin and on your iphone/ ipad as an app–so pretty much every modern computer/phone  out there can use it.  It is really four calculators in one—a scientific one,  graphing calc, statistics calculator and a matrices/vector calculator.  Let’s look at each one in detail.

The Graphing Calculator

Meta Calc can graph up to 7 equations or inequalities,  find their intersections,  produce a table a values or trace a point along any equation. You can also zoom in/zoom out , set the x-scale or y-scale, x-min/max, y-min/max, pan around the graph with your mouse.  A distinctive feature is the ability to save any of your graphs as images to your computer ( .png files). Just hit the ‘save graph’ button, and you will download the graph. This is a feature that any student or teacher could appreciate—the next time you need a graph for a presentation or a worksheet for your math lesson, just type in the equation and hit ‘save graph.’  I actually know some teachers that have used this very feature to introduce slope. One teacher, for instance, graphed 7 equations, slightly changing the slope for each one, and then let her students explore the relationship between the slope of a line and its graph.

The Scientific Calculator

The scientific calculator provides a really intuitive user experience.  It has all of the basic functions and buttons you’d expect including sin, cos, sin-1, cosh, log and more. Plus it has some more advanced features including a button to calculate   least common multiples, permutations, combinations and—possibly most powerful of all—a linear equations solver that lets you input up to 6 equations with either two or three variables and the solver will calculate the solutions.

The Matrix Calculator

The matrices/vector calculator has a wide range of functions. You can calculate a matrix’s determinant, or its inverse. Also, you can add, subtract, multiply and transpose matrices. The same functions are available for vectors.

The Statistics Calculator

Last but definitely not least is the statistics calculator. This has the fundamentals that you’d expect: calculating quartiles, mean, median, mode as well as correlation coefficient and various types of regressions (linear, quadratic, exponential, cubic , Power, Logarithmic, Natural Logarithmic).    You can then plot the data to the graphing calculator! A stand-out features is the ability to compute  Student t-tests: either 1 or 2-Tailed T-Tests (paired and unpaired). I was unable to find any calculators online that let you enter raw data and calculate T-tests so this is quite a rare online find.

The calculator can be found here : http://www.meta-calculator.com/online/.