Posted in Curriculum Reform, Mathematics education

Understanding by Design from WikiPilipinas

I think the following entry from WikiPilipinas needs revising. “Learning of facts”? Check also the last statement.

“Teaching for understanding” is the main tenet of UbD. In this framework, course design, teacher and student attitudes, and the classroom learning environment are factors not just in the learning of facts but also in the attainment of an “understanding” of those facts, such as the application of these facts in the context of the real world or the development of an individual’s insight regarding these facts. This understanding is reached through the formulation of a “big idea”– a central idea that holds all the facts together and makes these connected facts worth knowing. After getting to the “big idea,” students can proceed to an “understanding” or to answer an “essential question” beyond the lessons taught.

One of my initial concerns about UbD in my previous post is about not checking first if the bandwagon we jumped in to will run in our roads although  I received a comment that said the DepEd did pilot it and are confident that it can. The results of the pilot I believe are not for public consumption. We just have to believe their word for it. But with this post at WikiPilipinas, I don’t know if it is clear to us what the wagon is.  Here’s the next paragraph:

Through a coherent curriculum design and distinctions between “big ideas” and “essential questions,” the students should be able to describe the goals and performance requirements of the class. To facilitate student understanding, teachers must explain the “big ideas” and “essential questions” as well as the requirements and evaluative criteria at the start of the class. The classroom environment should also encourage students to work hard to understand the “big ideas” by having an atmosphere of respect for every student idea, including concrete manifestations such as displaying excellent examples of student work.

But I love the description of traditional method of constructing the curricula in the following paragraph. Very honest. But I can’t agree about the analogy with Polya’s.

The UbD concept of “teaching for understanding” is best exemplified by the concept of backward design, wherein curricula are based on a desired result–an “understanding” or a “big idea”–rather than the traditional method of constructing the curricula, focusing on the “facts” and hoping that an “understanding” will follow. Backward design as a problem-solving strategy can even be traced back to the ancient Greeks. In his book “How to Solve It” (1945), the Hungarian mathematician George Polya noted that the Greeks used the strategy of “thinking backward” by knowing what you want as a solution in order to solve a problem.

If I remember right, G. Polya wrote “look back” as the last step for solving a problem. It means you reflect on your solution and answer in relation to the problem. But wait, there is a problem solving strategy called “working backwards” which is probably what is meant here but as an analogy to backward design? Uhmmm …

Oh, by the way, “backward design” is a problem solving strategy?

Not that I’m happy we’re adapting Understanding by Design but who cares if I’m happy with it or not. There isn’t anything I can do in that department but just to help now to make sure we make the most of it. It is is a multimillion peso project. That’s our taxes. The one in WikiPilipinas is by far the only resource in the net for UbD Philippines. If you happen to know other related sites, please share.

Here’s one research about UbD in Singapore. Here’s my other UbD related post

Posted in Curriculum Reform, Mathematics education

My issues with Understanding by Design (UbD)

Everybody is jumping into this new education bandwagon like it is something that is new indeed. Here are some issues I want to raise about UbD.  I am quoting Wikipedia in this post but this is also how UbD is explained  in other sites.

Understanding by Design, or UbD, is an increasingly popular tool for educational planning focused on “teaching for understanding”.

Is not teaching for understanding been the focus of all curricular reforms, then and now? No curriculum reformer wants to be caught in the company of rote learning, never mind that it’s how curricula are implemented, regardless of its form, kind and  substance in many classes. Teaching for understanding is not something new.

UbD expands on “six facets of understanding”, which include students being able to explain, interpret, apply, have perspective, empathize, and have self-knowledge.

I wonder which of these facets has not been a part of what it means to understand then. I’m not sure in other subject areas but these facets of understanding such as explain, interpret, and apply does not capture what it means to understand mathematics.

To facilitate student understanding, teachers must explain the “big ideas” and “essential questions” as well as the requirements and evaluative criteria at the start of the class.

Back in college we attribute it to Ausubel who promoted the idea of using advance organizers.  Of course, you don’t tell your students right away how they will be assessed. They don’t have those rights, then. Also, this method only works for some topics. In mathematics if the approach is Teaching through Problem Solving or Discovery method, this is a no-no as it might limit the students thinking in exploring their own ways of working with the task at hand.

The emphasis of UbD on “big ideas” is welcome development but shouldn’t this be contained in the curriculum framework? The “essential questions”, those elusive questions that teachers have difficulty formulating since probably the time the  education community was talking about “art of questioning” are also good reminders to all of us that ‘hello, processing questions before or after any activity are what make and unmake a lesson’. But isn’t it that one can only identify the enduring understanding required and formulate good questions if he/she has a very good content knowledge (CK) and pedagogical content knowledge (PCK)?. Shouldn’t the money and time for training teachers how to design a lesson using UbD be spent instead on deepening their understanding of CK and PCK? Shouldn’t we make sure first that we have a good curriculum framework that articulates what are important for students to know and understand in each subject area and in each content topic?

The emphasis of UbD is on “backward design”, the practice of looking at the outcomes in order to design curriculum units, performance assessments, and classroom instruction.

In my part of the globe, there is a national curriculum which is a collection of SMART objectives. These learning objectives have always been stated in terms of outcomes. Weren’t they called competencies? Aren’t these competencies tell what to assess? The trouble is, our list of competencies consist of factual and procedural knowledge and very little on problem solving and reasoning which never really get taught because they are all found at the end of each chapter!

According to Wiggins, “The potential of UbD for curricular improvement has struck a chord in American education. Over 250,000 educators own the book. Over 30,000 Handbooks are in use. More than 150 University education classes use the book as a text.”

That explains everything. Everybody is hooked on the book that no one found time to do research if it works or not. Of course, on this part of the world where I come from I could not possibly have full access to current studies in educational planning and curriculum conducted elsewhere. I’m pretty sure though that we don’t have a study here yet. This is actually my issue. We’re jumping on a bandwagon created elsewhere without checking first if it will run on our roads.

More

Understanding by Design recommends a structure for curriculum planning, for designing instruction. It is not surprising that this is a welcome development because of lack of the same when it comes to this area. College education and in-service programs have failed to equip teachers the knowledge and skills to identify the important ideas in their major field of study.

Click here for the proposed stages of lesson development by UbD (thanks Jimmy Wysocki). Imagine it in the hands of our classroom teachers. Imagine how their faces will look like if you tell them “these elements should be in your written lesson plans”! And when they look for resources, all they have is an anemic curriculum framework and textbooks teaching facts that can be Googled. They will follow the directives, of course, as they have always done in the past in this part of the globe. They won’t just have time anymore to study and prepare  for the actual teaching of the lesson, especially in examining how their students learn specific topic. Surely, they will have a very neat plans complete with the elements. But lest we forget, learning is still more a function of the experiences students engages in, that is the lesson, and not in the lesson plans format.

Lastly, UbD is a one size fits all for all subject areas. That’s what make it highly suspect. Click here and here for sequels of this post.