Posted in Algebra, Geogebra

Solving systems of linear equations by elimination method

This short investigation  about the graphs of the sum and difference of two or more linear equations may be used as an introductory activity to the lesson on solving systems of linear equations by elimination. It will provide a visual explanation why the method of elimination works, why it’s ok to add and subtract the equations.

The  investigation may be introduced using the GeoGebra applet below.

1. Check the box to show the graph when equations b and c are added.

2. Where do you think will the graph of b – c pass? Check box to verify prediction.

3. Check the box to show graphs of the sum or difference of two equations. What do you notice about the lines? Can you explain this?
[iframe https://math4teaching.com/wp-content/uploads/2011/07/solving_systems_by_elimination.html 700 400]

When equations b and c intersect at A. The graph of their sum will also intersect point A.

b:  x + 2y =1

c:  xy =-5

a:  2x+y=-4

After this you can then ask the students to think of a pair of equation that intersect at a point and then investigate graph of the sum and difference of these equations. It would be great if they have a graphing calculator or better a computer where they can use GeoGebra or similar software. In this investigation, the students will discover that the graphs of the sum and difference of two linear equations intersecting at (p,r) also pass through (p,r). Challenge the students to prove it algebraically.

If ax+by=c and dx+ey=f intersect at (p,r),

show that (a+d)x+(b+e)y=f +c also intersect the two lines at (p,r).

The proof is straightforward so my advise is not to give in to the temptation of doing it for the students. After all they’re the ones who should be learning how to prove. Just make sure that they understand that if a line passes through a point, then the coordinates of that points satisfies the equation of the line. That is if ax+by=c passes through (p,r), then ap+br=c.


The investigation should be extended to see the effect of multiplying the linear equation by a constant to the graph of the equation or to start with systems of equations which have no solution. Don’t forget to relate the results of these investigations when you introduce the method of solving systems of equation by elimination. Of course the ideal scenario is for students to come up with the method of solving systems by elimination after doing the investigations.

You can give Adding Equations for assessment.

Posted in Algebra, Geogebra

Teaching with GeoGebra – Investigating coordinates of points

The most basic mathematics students need to know to understand GeoGebra is the coordinate axes. Must you teach students how to plot points and interpret coordinates of points before they use GeoGebra or the other way around? I think, at the same time. Below is a sample activity on how I think this can be done.  The lesson is about investigating coordinates of points on a Cartesian plane. Its objective is to teach how to use GeoGebra’ s point tool, interpret coordinates of points and make generalizations.

1. Locate the reflections of the points A, B, C, D, E, F, and G if they will be reflected along the y-axis. Use the point button [.A] or the reflect button [.\.] to plot the points.

2. Hover the cursor along the points A to E. These pairs of numbers are called the coordinates of the point. What do you notice about the coodinates of these set of points (A through E)? Will this observation be true to the reflections of A, B, C, D, and E you just plotted?
3. Hover the cursor to the other points. How do the coordinates of the points relate to the values in the x and y axes?
4. In the input bar type P=(5,-2). Before hitting the Enter key, predict the location of the point. Experiment using other coordinates. Use the Move button to drag the grid to see the points you plotted, if they are not visible in the panel.
5. The x and y axes divide the plane into four quadrants. Describe the coordinates of the points located in each quadrant. What about the points along the x -axis and y – axis?

Click here to explore.

Of course, the teacher need to understand a little about GeoGebra first before giving this activity to his/her class.

Posted in Algebra, High school mathematics

Teaching the concept of function

Mathematics is not just about the study of numbers and shapes but also about the study of patterns and relationships. Function, which can define some of these relationships, is an indispensable tool in its study. Function is the central underlying concept in calculus. It is also one of the key concepts of mathematics that can model many quantitative relationships.

Textbooks and teachers usually introduce function via a situation with the related quantities already identified. What is required of the  students is to learn how to set up and represent the relationships in tables, graphs, and equation and analyze the properties. In the real world, when function is used as a model, the first thing that needs to be done is to identify the varying quantities. So, it is important to let students identify the quantities and let them determine which of these quantities may be related. This way they get a sense of what function really is and what it is for. The function is not the graph, not the table of values, and not the equation. The function is the relationship between the variables represented by these. The study of function is the study of these relationships and their properties, not finding y  or f(x) given x and vice versa, not reading graphs,  and not translations among the representations. These are important knowledge and skills, yes, but only in the context for investigating or learning more about the relationships between the quantities, that is, the function. Thus, for an introductory lesson for function, I find it useful to use a situation where students themselves will:

  1. identify the changing and unchanging quantities;
  2. determine the effect of the change of one quantity over the others;
  3. describe the properties of the relationship; and,
  4. think of ways for describing and representing these relationships.

These are the ‘big ideas’ students should learn about function. Of course, there are others like looking or dealing with function as a mathematical object and not only as a process or procedure for generating or predicting values. However, for an introductory lesson on function, teachers need not focus on this yet.

Sample introductory activity:

What are the quantifiable attributes or quantities can you see in the figure below? Which of these quantities will change and remain unchanged if GC is increased or decreased? Click the figure and move point C. Are there ways of predicting the values of these changing quantities?

teaching function
Identifying related quantities

Click here or the image above to go to dynamic window for the worksheet.

I like this particular activity because it gives students the opportunity to link geometry/measurement concepts to algebra and learn mathematics through solving problems.

Click link for a synthesis of the evolution of the definition of function and What are the big ideas in function?